
DATA SHEET

Smart Contract Audit
Trustworthy smart contract audits for a secure blockchain

Security Challenges

Blockchain technology is designed to be secure, but there are still several challenges
to ensuring the security of a blockchain. Some of these challenges include:

• Smart contract vulnerabilities: Smart contracts, which are self-executing con-
tracts with the terms of the agreement written directly into code, can contain
vulnerabilities that can be exploited by attackers. This is especially true if the
code has not been thoroughly audited or if the contract has not been properly
tested.

• 51% attack: In a 51% attack, a group of attackers gains control of more than
50% of the computational power of a blockchain network, allowing them to ma-
nipulate the network and potentially reverse or block legitimate transactions.

• Sybil attack: A Sybil attack is when a malicious actor creates multiple identi-
ties or nodes in a network in order to gain control of a significant portion of the
network’s computational power.

• Double-spending: In a double-spending attack, an attacker is able to spend the
same digital currency or token more than once by creating a copy of the digital
asset.

• Privacy anddata leakage: A privacy anddata leakage attack iswhen an attacker
accesses sensitive data stored on the blockchain, such as personal information
or financial data.

• Side-Channel Attack: A side-channel attack is an attack that is exploiting some
side information that is not part of the main communication channel, such as
power consumption or electromagnetic radiation.

These are just a few examples of the security challenges that blockchain technology
faces. The field is still evolving, and security researchers and developers are constantly
working to identify and mitigate new threats.

Customer Benefits

• Identify and address
vulnerabilities and
potential security risks
before the launching

• Build trust with
stakeholders and
customers

• Avoid costly security
breaches and downtime in
the future

• Increase performance of
the blockchain network it is
deployed on

©2023 CyStack. All rights reserved.

DATA SHEET SMART CONTRACT AUDIT

Overview

A smart contract audit is a comprehensive review of a smart contract’s code to
ensure that it functions as intended, is secure, and is free of vulnerabilities. Smart
contracts are self-executing digital contracts that are based on blockchain tech-
nology, and they are used to automate transactions and enforce the terms of an
agreement. Smart contract audits are typically performed by security experts who
are well-versed in blockchain technology and smart contract programming languages.

The primary goal of a smart contract audit is to identify any security vulnerabilities
or weaknesses in the code that could be exploited by attackers. The audit typically
involves a thorough analysis of the smart contract’s design, implementation, and
security measures, as well as testing and analysis to identify any potential issues. The
audit may also include a review of the smart contract’s documentation, interviews with
developers and stakeholders, and recommendations for security, functionality, and
efficiency improvement to their smart contracts.

By having their smart contracts audited by a reputable third-party auditor, developers
can demonstrate to stakeholders that they take security and reliability seriously and
boost their credibility and reputation within the blockchain community, which can be
important for attracting investors and partners. In some cases, smart contracts must
comply with regulatory and compliance requirements. Also, smart contract audits can
help ensure that the code meets and complies with standard and regulatory require-
ments if they are mandatory.

Key Features

• Code review

• Automated testing
powered by SafeChain.org

• Penetration testing

• Governance testing

• Performance testing

• Interoperability testing

• Bug Bounty program
powered by WhiteHub.net

How CyStack Helps

TheCyStackAudit Team is a groupof highly skilled security testers who use a goal-oriented approach to testing, refined through
years of experience and extensive testing. Our teammembers have a uniqueblendof appdevelopment and security testing ex-
pertise, enabling them to conduct comprehensive security evaluations that uncover potential risks for organizations. Members
of this team are also regular speakers at world-known cybersecurity conferences and also talented bug hunters who discovered
many critical vulnerabilities in the products and are acknowledged in the Hall of Fame of global tech giants such as IBM, HP,
Microsoft, Alibaba, Sea Group, etc.

Our team has extensive experience in identifying and mitigating vulnerabilities in smart contract code, which can help prevent
potential attacks on your blockchain system. We use a combination of manual code review and automated tools to ensure that
your smart contracts are free from bugs, errors and any potential vulnerabilities. Our team also has a deep understanding of
the various blockchain platforms, such as Ethereum, EOS, TRON and more, which means that we can provide audits for smart
contracts on any blockchain platform.

©2023 CyStack. All rights reserved.

DATA SHEET SMART CONTRACT AUDIT

Methodology

Generally, the methodology for security auditing a smart contract typically includes
several steps, such as:

1. Preparation: This includes setting the scope of the audit, identifying the stake-
holders, and gathering all relevant documentation, such as the whitepaper,
smart contract code, and design documents.

2. Threat modelling: This step involves identifying potential threats and vulnera-
bilities that may affect the smart contract. This includes analyzing the smart con-
tract’s functionality, data flow, and external interactions to identify any potential
attack vectors.

3. Code review: This step involves reviewing the smart contract code to identify
any bugs, errors, or vulnerabilities. This can be done manually by an experi-
enced developer or by using automated tools to help identify potential issues.
CyStack also uses SafeChain, an automated blockchain vulnerability scanner
built by our team, for this stage.

4. Test execution: This step involves executing the smart contract on a test network
and performing various types of testing, such as unit testing, functional testing,
and security testing.

5. Reporting: This step involves documenting the findings of the audit and pro-
viding a report that includes an overview of the audit, a list of identified issues,
and recommendations for remediation.

6. Remediation: This step involves implementing any recommended changes to
the smart contract code to fix identified issues and vulnerabilities.

7. Retesting: This step involves re-executing the smart contract on the test net-
work to ensure that the identified issues have been resolved and that the smart
contract is now secure.

Use Cases

• Financial Services

• Digital Identity

• Business Management

• Healthcare

• Real Estate

• Supply Chain Management

• Gaming

• Digital Marketplace

• Corporate and Governance

• Crowdfunding

During a smart contract audit, the following types of vulnerabilities are tested but not limited in:

1. Reentrancy: This type of vulnerability occurs when a smart contract allows an attacker to repeatedly call it and extract its
value multiple times.

2. Unchecked call return value: This type of vulnerability occurs when a smart contract does not properly check the return
value of a call to another contract, which can lead to the execution of malicious code.

3. Unchecked user input: This type of vulnerability occurs when a smart contract does not properly validate user input,
which can lead to the execution of malicious code or the manipulation of data.

4. Unchecked math operations: This type of vulnerability occurs when a smart contract uses math operations that can
overflow or underflow, leading to unintended results.

5. Unchecked external calls: This type of vulnerability occurs when a smart contract calls an external contract without
properly checking the return value, which can lead to the execution of malicious code or the manipulation of data.

6. Integer overflowand underflow: This type of vulnerability occurs when a smart contract does not properly handle large
numbers, which can lead to unintended results.

7. Unsecured data storage: This type of vulnerability occurs when a smart contract stores sensitive data in an unsecured
manner, which can lead to data breaches.

8. Timestamp dependence: This type of vulnerability occurs when a smart contract is dependent on the timestamp pro-
vided by the blockchain network, which can be manipulated by an attacker.

9. Unsecured randomness: This type of vulnerability occurs when a smart contract uses an insecure random number gen-
erator, which can be predicted by an attacker.

10. Access control: This type of vulnerability occurs when a smart contract does not properly implement access control,
which can allow unauthorized parties to access or manipulate data.

©2023 CyStack. All rights reserved.

DATA SHEET SMART CONTRACT AUDIT

Supported Platforms

CyStack can audit smart contracts on numerous blockchain networks or chains, such as:

• Ethereum: The most popular blockchain network that supports smart contracts written in Solidity or Vyper, which is a
python-like programming language.

• BNB Smart Chain (BSC), previously Binance Smart Chain: A blockchain network that runs in parallel to the BNB Beacon
Chain and supports smart contracts written in Solidity.

• TRON: An open-source public Ethereum-compatible blockchain platform that supports Solidity smart contracts.

• Polygon, formerly Matic Network: A sidechain scaling solution that runs alongside the Ethereum blockchain with smart
contracts written in Solidity or Vyper.

• Avalanche: An open-source platform that features 3 built-in blockchains, one of which is Contract Chain (C-Chain), for
launching decentralized applications (dApps) and enterprise blockchain deployments. It is EVM-compatible, and hence
supports smart contracts written in Solidity.

• Solana: An efficient and speed-first blockchain network that is constructed with programs (smart contracts), written in
Rust or C/C++.

• NEAR: A high-performanceblockchain network that supports smart contractswritten in JavaScript, Rust orAssemblyScript.

• EOSIO: A blockchain network that supports smart contracts written in C++.

• NEO: The most developer-friendly blockchain that supports smart contracts written in various programming languages,
including C#, Python, Go, Java and TypeScript.

• Algorand: A blockchain platform that supports smart contracts written in multiple programming languages, including
Python and a JavaScript-like language called Reach.

• Aptos: A Layer 1 blockchain with resource objects and Move programming language for smart contracts.

• Sui: The first permissionless Layer 1 blockchain that is written in Rust and supports smart contracts written in the Move
programming language.

We also support auditing dApps and enterprise blockchains that are created and deployed with the following platforms:

• Cosmos: The key Layer 0 blockchain that connects different blockchains into ameta-blockchain system called interchain.
Cosmos provides an SDK for building dApps and Layer 1 chains in Go.

• Polkadot: The first fully-sharded blockchain consists of amain chain called the Relay Chain and shards called parachains.
With Parachain Development Kit (PDK), developers can build parachains written in Rust.

• Quorum: An open-source, permissioned blockchain protocol based on Ethereum that allows developers to deploy
networks with contracts written in Solidity or Vyper.

• Hyperledger: An open-source collaborative effort created to advance cross-industry blockchain technologies, which
provides various distributed ledger frameworks, supporting different programming languages, including Go, Python,
Rust, Java, JavaScript, C++, C#, Objective-C and Swift.

• Corda: A permissioned peer-to-peer (P2P) distributed ledger technology (DLT) platform that is primarily used by busi-
nesses in finance-related industries to build dApps and blockchains written in Kotlin or Java.

• Hedera Hashgraph: A open-source public distributed ledger based on the Hashgraph algorithm, which is an alternative
to blockchain. It provides SDKs supporting multiple programming languages, such as Java, JavaScript/TypeScript, Go,
Rust, C++ and Swift.

©2023 CyStack. All rights reserved.

DATA SHEET SMART CONTRACT AUDIT

Flow ToWork With Clients

Initial engagement Project planning Assessment Real-time report Patching

Repeat until all test cases are completed

Final report

Communicating with the
client to understand their
requirements and setting
the scope of the project

Based on the requirements,
create a detailed plan for the
assessment, including the
methodology and tools to be
used

Conducting the actual
audit, which includes
source code review and
dynamic tests

Reporting vulnerabilities
immediately after finding
out via CyStack
vulnerability management
platform

The client fixes issues
through the
recommendations from
CyStack

Presenting the findings in a
detailed report that
includes executive
summary and detailed
vulnerabilities

Follow-up

Communicating with the
client to ensure that all
recommendations are
implemented and verifying
that the system is secure

Closure

Archiving project-related
data and officially closing
the project

.

About CyStack

CyStack is an innovative company in the field of cybersecurity in Vietnam. We are a pioneer in
building next gen security products for businesses and individuals. Our solutions focus on data
protection, cyber attack prevention, and security risk management.

For more information, please call
(+84) 247 109 9656 or send an
email to contact@cystack.net to
speak to CyStack security
specialist.
cystack.net

©2023 CyStack. All rights reserved.

https://cystack.net

