
CONFIDENTIAL

CYBERSECURITY AUDIT
REPORT
Version 1.1

This document details the process and results of the security audit performed by CyStack on behalf

of Demlabs from 18/09/2024 to 22/10/2024.

Prepared for

Demlabs

Prepared by

Vietnam CyStack Joint Stock Company

© 2024 CyStack. All rights reserved.

Portions of this document and the templates used in its production are the property of CyStack and cannot be copied (in full

or in part) without CyStack’s permission.

While precautions have been taken in the preparation of this document, CyStack the publisher, and the author(s) assume no

responsibility for errors, omissions, or for damages resulting from the use of the information contained herein. Use of

CyStack’s services does not guarantee the security of a system, or that computer intrusions will not occur.

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Contents

1 Executive Summary 4

1.1 Key Findings . 4

1.2 Limitations . 4

1.3 Assessment Components . 5

2 Methodology 6

3 Dashboard 8

4 Recommendations 9

5 Code Review Details 10

5.1 Steps to Conduct . 10

5.2 Manual Review Results . 10

6 Vulnerability Details 15

7 Appendix 16

Appendix A – Vulnerability Severity Ratings . 16

Appendix B – Vulnerability Categories . 17

Appendix C – Security Assessment For Source Code Review 18

© 2024 CyStack. All rights reserved. 1

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Confidentiality Statement

This document is the exclusive property of Demlabs (Cellframe team) and CyStack Vietnam Joint

StockCompany (CyStack). This document contains proprietary and confidential information. Duplication,

redistribution, or use, in whole or in part, in any form, requires consent of bothDemlabs andCyStack.

CyStack may share this document with auditors under non-disclosure agreements to demonstrate

security audit requirement compliance.

Disclaimer

A security audit is considered a snapshot in time. The findings and recommendations reflect the

information gathered during the assessment, not any changes or modifications made outside of that

period.

Time-limited engagements donot allow for a full evaluationof all security controls. CyStackprioritized

the assessment to identify theweakest security controls an attackerwould exploit. CyStack recommends

Cellframe conducting similar assessments on an annual basis by internal or third-party assessors to

ensure the continued success of the controls.

Version History

Version Date Release notes

1.0 22/10/2024 Final audit report for Cellframe project exported for

Demlabs.

No critical vulnerabilities were found.

1.1 13/12/2024 Demlabs updated source code with patches for High and

Medium issues found in static code analysis.

© 2024 CyStack. All rights reserved. 2

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Contact Information

Company Representative Position Email

Demlabs Dmitry Gerasimov General Director naeper@demlabs.net

CyStack Nguyen Ngoc Anh Sales Manager anhntn@cystack.net

Auditors

Fullname Role Email address

Nguyen Huu Trung Head of Security trungnh@cystack.net

Nguyen Van Huy Auditor

Vu Trong Khoi Auditor

Phung Phuong Nam Auditor

Nguyen Ba Anh Tuan Auditor

Ha Minh Chau Auditor

© 2024 CyStack. All rights reserved. 3

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Executive Summary

From 18/09/2024 to 22/10/2024, Cellframe engaged CyStack to evaluate the security posture of its

infrastructure compared to current industry best practices. This security audit is chiefly based on

Source Code Review methodology. Conducted security assessments in this audit project strictly

followsOWASP Code Review Guide and customized test cases from CyStack.

CyStack’s security assessment for Demlabs focused on evidence, which confirmed that Cellframe

properly functions as a quantum-resistant blockchain platform, as well as security issues that are

typical to dApps. The assessment emphasized remediation over analyzing exploitability, including

issues reported by tools. This means that less time was spent determining how specific security

flaws might be exploited and more time identifying as many possible security issues and associated

remediation as time allowed. The audit results also included a cursory review of dependent libraries

and recommendations for improving software assurance practices at Cellframe.

1.1 Key Findings

CyStack did not find any proof that indicates vulnerable usage and storage of users’ wallet private keys

inCellframenodes, nor any critical severity issues thatwould undermine the cryptography implementation

and security of confidential transactions. A great number of coding issues were found after the source

code static analysis. Most of these issues were related to Overflow vulnerabilities and Dereference of

a Null pointer. Key findings from the automated static code analysis included:

• 5 Low issues related to Improper Null Termination;

• 48 Medium issues, most of which are Overflow vulnerabilities and Pointer Usage flaws;

• 1 High issue referred to the Potential Negative Number Used as Index.

However, after thorough manual secure code reviews from CyStack, no findings could be exploited

practically performed or bypassed against the current safe checks.

1.2 Limitations

Due to the strict timeframe of the project, security vulnerabilities in their parties and open-source

library dependencies might have not been discovered.

© 2024 CyStack. All rights reserved. 4

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

1.3 Assessment Components

Source Code Review

Source code contains themost detailed information about an application. Source code review allows

security researchers to understand thoroughly howanapplicationoperates andperforms. Researchers

then can search for design flaws and security vulnerabilities in the application.

The safety and security assessment for application source code includes automated andmanual tests.

For automated tests, static code analysis tools are used to identify dead code, unsafe coding patterns

and the usage of libraries or plugins with publicly known vulnerabilities. Automated tests also search

for the existenceof hard-coded sensitive information such aspasswords, database connection strings,

private keys for third-party services, etc.

Manual tests focus on analyzing the implementationof the application’s operational logic and functional

components todetect critical vulnerabilities, which arepossibly related to user input validation, unsafe

database querying, unsafe file handling, etc. or business logic flows. People who perform manual

tests are security researchers.

Scope

Initial target

Assessment Details Type

Source Code Review
cellframe-node (all .h, .c, .cpp files in

sources and conftool)
Source code

Source Code Review

dap-sdk (all .h, .c files, EXCEPT for those

in crypto, 3rdparty, avrestream and all

subfolders named test/tests)

Source code

Re-test target

Source Code Review
cellframe-node (all .h, .c, .cpp files in

sources and conftool)
Source code

Source Code Review

dap-sdk (all .h, .c files, EXCEPT for those

in crypto, 3rdparty, avrestream and all

subfolders named test/tests)

Source code

Scope Exclusions

Any other directories than those listed in the table Scope, for every repository.

Client Allowances

Cellframe did not provide any allowances to assist with the testing.

© 2024 CyStack. All rights reserved. 5

https://gitlab.demlabs.net/cellframe/cellframe-node/-/tree/0320a9f5d59d2414fd3702c843b6ff5db44783fb
https://gitlab.demlabs.net/cellframe/cellframe-node/-/tree/0320a9f5d59d2414fd3702c843b6ff5db44783fb
https://gitlab.demlabs.net/dap/dap-sdk/-/tree/b760b2665e99241eb70bc057cd333309bcb29fe6
https://gitlab.demlabs.net/dap/dap-sdk/-/tree/b760b2665e99241eb70bc057cd333309bcb29fe6
https://gitlab.demlabs.net/dap/dap-sdk/-/tree/b760b2665e99241eb70bc057cd333309bcb29fe6
https://gitlab.demlabs.net/cellframe/cellframe-node/-/tree/25bf523e212836893b5face0554b06c4f57a3141
https://gitlab.demlabs.net/cellframe/cellframe-node/-/tree/25bf523e212836893b5face0554b06c4f57a3141
https://gitlab.demlabs.net/dap/dap-sdk/-/tree/caa3b8fe001e5459c7656bd9a96e15cd6fb074a6
https://gitlab.demlabs.net/dap/dap-sdk/-/tree/caa3b8fe001e5459c7656bd9a96e15cd6fb074a6
https://gitlab.demlabs.net/dap/dap-sdk/-/tree/caa3b8fe001e5459c7656bd9a96e15cd6fb074a6

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Methodology

CyStackperforms a two-part for an application SourceCodeReview. The first part is an implementation

review. During this part, CyStack focuses on validating specifications from the applicationdocumentation,

adhering to its implementation. Also, issues related to cryptography andperformancewill be carefully

looked for. The second part is a source code review for vulnerabilities using static and dynamic

analysis and fuzz testing. According to the security issues, found from automated and manual tests,

CyStack then reproduces concrete test cases for each to verify whether these issues are vulnerabilities

anddecide their severity levels. In the secondpart, security errorswithin the application implementation,

for example, stack-based buffer overflows, data races, memory use-after-free issues, memory leaks,

runtime error conditions, and business logic circumventions, will be researched. In addition, the

review includes a cursory assessment of dependent third-party open source-code libraries used in

the application. From the audit results, CyStack supports the developer team in understanding the

root causes and provides the developers with solutions to prevent the repetition of similar bugs and

vulnerabilities and other recommendations for improving software assurance practices. We aim to

provide the most complete and timely support to the developer team to ensure that the application

source code is always up to themaximum level of safety. The process for Review Source Code service

from CyStack involves seven (7) main steps as follows:

Phase 1: Preparation

CyStack worked with Demlabs to clarify targets

for the Source Code Review assessment, identify

types of vulnerabilities, which are most important

to them and understand the goal of this

assessment. This collaborative process was used

to:

• Gain an overview of the application

• Develop scope for the engagement

• Determine a sufficient testing window

• Determine the risk levels associated with

each asset

• Gather shareable documentation covering

the implementation of the application

• Identify the areas of scope that researchers

should pay special attention to

• Identify what types of vulnerabilities that

the customer is most interested in testing

for

Phase 2: Discovery

CyStack performs a preliminary review of the

source code and compares implementations in

the source code with technical specifications or

documentation provided by Demlabs to clarify

the features, logic and operating procedures of

the application, application type, language or

framework. application deployment, application

design and available security mechanisms, etc.

CyStack will communicate directly with Demlabs

throughout this period.

Phase 3: Automatic source code analysis

After the above two stages, CyStack conducts

automatic analysis and scanning of the source

code provided with available and self-developed

tools. The results of automatic analysis of the

source code show preliminary weaknesses as

well as possible vulnerabilities in the source

code. In addition, identifying application entry

points, third-party libraries or plugins used in

the application, or the existence of sensitive

information (such as passwords, database

connection strings, etc.) data, private keys for

APIs or third-party services) are stored directly on

© 2024 CyStack. All rights reserved. 6

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

the system.

Phase 4: Threat modelling

Based on the gathered information, CyStack

implements threat modelling to the application.

Threat modelling includes the range of attack

vectors, classification, and threat classifiers of

identified threats, to provide a clear view of the

level of risk by priority. With the threat model,

researchers can prioritize testing and detailed

evaluation of functions that are important or at

high risk of being exploited.

Phase 5: Manual review and exploitation

Security researchers at CyStack directly evaluate

the source code using both static and dynamic

analysis methods. Static analysis means

that researchers directly read and identify

inappropriate pieces of code in the source

code. At the same time, the researchers perform

dynamic analysis, which means analyzing the

processes performed during the application’s

operation, as well as finding ways to exploit

the weaknesses previously found in the source

code to conclude about the source code’s

security. Once the vulnerability is discovered,

the researchers will build the exploit code and

save it as exploit proof to exchange and agree

on a solution for the customer at a later stage.

Customers will be notified of the discovered

critical vulnerabilities in time for early patching.

Phase 6: Remediation proposal

Detected vulnerabilities are aggregated and

notified to customers. During this phase, security

researchers at CyStack will directly discuss with

the application developers team to come up with

a solution that best suits the application design

and development infrastructure. application

implementation, as well as customer needs,

principles and standards. The solution

can be temporary (mitigation) or definitive

(remediation), depending on the specifics of the

application design and application deployment

system. Vulnerabilities will be prioritized by

severity to ensure maximum application security

in the product environment.

Phase 7: Reporting

After completing every security assessment for

the application source code, CyStack will send a

final report to the customer. The report includes

an executive summary of audit results and

detailed descriptions of found vulnerabilities.

© 2024 CyStack. All rights reserved. 7

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Dashboard

Maintaining a healthy security posture requires constant review and refinement of existing security

processes. Running a CyStack Security Audit allows Demlabs’s internal security team to not only

uncover specific vulnerabilities but gain abetter understandingof the current security threat landscape.

Vulnerabilities by severities

No warnings from static analysis tools were exploitable, and no other vulnerabilities were found.

Vulnerabilities by assets

No warnings from static analysis tools were exploitable, and no other vulnerabilities were found.

Vulnerabilities by CWE

No warnings from static analysis tools were exploitable, and no other vulnerabilities were found.

Table of vulnerabilities

No warnings from static analysis tools were exploitable, and no other vulnerabilities were found.

© 2024 CyStack. All rights reserved. 8

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Recommendations

Based on the results of this assessment, CyStack has the following high-level key recommendations:

Key recommendations

Issues

After the source code review for cellframe-node and dap-sdk, CyStack did

not detect any severe security issues and design flaws. CyStack could

conclude that Cellframe is a well-designed blockchain platform, equipped

with post-quantum cryptography for encryption/decryption. Althoughmany

coding issues were found through static analysis, CyStack has manually

reviewed and found no potential attack vectors to exploit these issues.

No vulnerabilities were identified during the project.

Recommendations

• Review the all findings from automated static code analysis.

• Refactor code with safer functions/methods, if possible.

• Thoroughly re-assess every input validation mechanisms before

unsafe functions.

References

• https://googleprojectzero.github.io/0days-in-the-wild/rca.html

• https://dl.acm.org/doi/10.5555/2530475

• https://medium.com/@AlexanderObregon/secure-coding-practices-i

n-c-12b756af90fe

© 2024 CyStack. All rights reserved. 9

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Code Review Details

5.1 Steps to Conduct

CyStack analyzed the source code using a variety of static and dynamic analysis tools. Specifically,

CyStack:

1. Statically analyzed the given source code with Clang Static Analyzer and Snyk.

2. Manually reviewed the code with IDE and GDB debugger. Built test case for each function in

Cellframe project. CyStack firstly focused on if any unsafe functions were used, then checked

on the business logic of important mechanism such as stream encryption/decryption, data

validation, etc.

5.2 Manual Review Results

Via Snyk, CyStack found a lot of potential coding issues in Cellframe, including using unsafe functions,

overflows, null pointers, etc.

However, none of these issues were directly exploitable, or able to bypass against current input

validation.

Demlabs later applied fixes on all findings from Snyk. The table below shows the state of remediation

for issues found in cellframe-node and dap-sdk via Snyk:

Name Affected Location Severity T1 T2

1
Potential Negative Number

Used as Index

dap-sdk/net/client/dap_client_p

vt.c, line 881
HIGH

2 Integer Overflow
dap-sdk/core/src/dap_file_utils.

c, line 665
MEDIUM

3 Integer Overflow
dap-sdk/global-db/dap_global_

db_driver_pgsql.c, line 420
MEDIUM

4 Integer Overflow
dap-sdk/global-db/dap_global_

db_driver_pgsql.c, line 505
MEDIUM

5 Integer Overflow
dap-sdk/global-db/dap_global_

db_driver_sqlite.c, line 817
MEDIUM

6 Integer Overflow
dap-sdk/core/src/dap_file_utils.

c, line 665
MEDIUM

© 2024 CyStack. All rights reserved. 10

https://clang-analyzer.llvm.org/
https://snyk.io/

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

7 Integer Overflow
dap-sdk/core/src/dap_file_utils.

c, line 1141
MEDIUM

8 Integer Overflow
dap-sdk/core/src/dap_file_utils.

c, line 1149
MEDIUM

9 Integer Overflow
dap-sdk/core/src/dap_file_utils.

c, line 1176
MEDIUM

10 Integer Overflow
dap-sdk/core/src/dap_file_utils.

c, line 1176
MEDIUM

11 Buffer Overflow
dap-sdk/core/src/dap_file_utils.

c, line 613
MEDIUM

12 Buffer Overflow
sources/main_node_tool.c, line

482
MEDIUM

13 Buffer Overflow
sources/main_node_tool.c, line

482
MEDIUM

14 Buffer Overflow
sources/main_node_tool.c, line

574
MEDIUM

15 Buffer Overflow
sources/main_node_tool.c, line

605
MEDIUM

16 Buffer Overflow
sources/main_node_tool.c, line

623
MEDIUM

17 Buffer Overflow
dap-sdk/net/stream/stream/dap

_stream.c, line 155
MEDIUM

18 Buffer Overflow
dap-sdk/net/client/dap_client_p

vt.c, line 411
MEDIUM

19 Buffer Overflow
dap-sdk/core/src/dap_file_utils.

c, line 1141
MEDIUM

20 Buffer Overflow
dap-sdk/global-db/dap_global_

db_driver_sqlite.c, line 545
MEDIUM

21 Buffer Overflow
dap-sdk/global-db/dap_global_

db_driver_sqlite.c, line 557
MEDIUM

22 Buffer Overflow
dap-sdk/global-db/dap_global_

db_driver_sqlite.c, line 569
MEDIUM

23 Buffer Overflow
dap-sdk/global-db/dap_global_

db_driver_sqlite.c, line 644
MEDIUM

© 2024 CyStack. All rights reserved. 11

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

24 Buffer Overflow sources/main_node_cli.c, line 89 MEDIUM

25 Path Traversal sources/main_node_cli.c, line 90 MEDIUM

26 Path Traversal
dap-sdk/core/src/dap_file_utils.

c, line 1141
MEDIUM

27 Path Traversal
sources/main_node_tool.c, line

574
MEDIUM

28 User Controlled Pointer
sources/main_node_tool.c, line

574
MEDIUM

29

Potential buffer overflow

from usage of unsafe

function

dap-sdk/net/server/enc_server/d

ap_enc_http.c, line 397
MEDIUM

30

Potential buffer overflow

from usage of unsafe

function

dap-sdk/net/stream/ch/dap_stre

am_ch_pkt.c, line 110
MEDIUM

31

Potential buffer overflow

from usage of unsafe

function

dap-sdk/net/stream/ch/dap_stre

am_ch_pkt.c, line 163
MEDIUM

32

Potential buffer overflow

from usage of unsafe

function

dap-sdk/net/stream/ch/dap_stre

am_ch_pkt.c, line 392
MEDIUM

33

Potential buffer overflow

from usage of unsafe

function

dap-sdk/net/server/http_server/

dap_http_simple.c, line 530
MEDIUM

34

Potential buffer overflow

from usage of unsafe

function

dap-sdk/net/server/notify_server

/src/dap_notify_srv.c, line 133
MEDIUM

35

Potential buffer overflow

from usage of unsafe

function

dap-sdk/net/server/notify_server

/src/dap_notify_srv.c, line 179
MEDIUM

36

Potential buffer overflow

from usage of unsafe

function

dap-sdk/core/src/dap_file_utils.

c, line 1370
MEDIUM

37

Potential buffer overflow

from usage of unsafe

function

dap-sdk/net/server/http_server/

dap_http_simple.c, line 292
MEDIUM

© 2024 CyStack. All rights reserved. 12

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

38

Potential buffer overflow

from usage of unsafe

function

dap-sdk/core/src/unix/linux/dap

_network_monitor.c, line 139
MEDIUM

39
Dereference of a NULL

Pointer

dap-sdk/global-db/dap_global_

db.c, line 1192
MEDIUM

40
Dereference of a NULL

Pointer

dap-sdk/global-db/dap_global_

db.c, line 1210
MEDIUM

41
Dereference of a NULL

Pointer

dap-sdk/net/server/http_server/

http_client/dap_http_user_agent

.c, line 96

MEDIUM

42
Dereference of a NULL

Pointer

dap-sdk/net/link_manager/dap_l

ink_manager.c, line 575
MEDIUM

43
Dereference of a NULL

Pointer

dap-sdk/net/link_manager/dap_l

ink_manager.c, line 996
MEDIUM

44
Dereference of a NULL

Pointer

dap-sdk/net/link_manager/dap_l

ink_manager.c, line 1036
MEDIUM

45
Dereference of a NULL

Pointer

dap-sdk/net/link_manager/dap_l

ink_manager.c, line 1146
MEDIUM

46
Dereference of a NULL

Pointer

dap-sdk/net/link_manager/dap_l

ink_manager.c, line 1261
MEDIUM

47
Dereference of a NULL

Pointer

dap-sdk/net/link_manager/dap_l

ink_manager.c, line 1261
MEDIUM

48
Dereference of a NULL

Pointer

dap-sdk/net/link_manager/dap_l

ink_manager.c, line 1262
MEDIUM

49
Dereference of a NULL

Pointer

dap-sdk/net/link_manager/dap_l

ink_manager.c, line 1265
MEDIUM

50 Improper Null Termination
sources/main_node_tool.c,

line 574
LOW

51 Improper Null Termination
dap-sdk/net/server/enc_server/d

ap_enc_http.c, line 218
LOW

52 Improper Null Termination

dap-sdk/net/server/json_rpc/rpc

_core/src/dap_json_rpc_respons

e_handler.c, line 70

LOW

53 Improper Null Termination
dap-sdk/net/client/dap_client_p

vt.c, line 1165
LOW

© 2024 CyStack. All rights reserved. 13

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

54 Improper Null Termination sources/exh_win32.c, line 89 LOW

EXPLICATION

Fixed Open

Timeline for re-tests:

• T1: First test from 18/09/2024 to 22/10/2024

• T2: Second test from 27/11/2024 to 13/12/2024

© 2024 CyStack. All rights reserved. 14

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Vulnerability Details

No warnings from static analysis tools were exploitable, and no other vulnerabilities were found.

© 2024 CyStack. All rights reserved. 15

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Appendix

Appendix A – Vulnerability Severity Ratings

Severity
CVSS 3.0

score range
Definition

CRITICAL 9.0-10.0

Exploitation is straightforward and usually results in

system-level compromise.

It is advised to form a plan of action and patch immediately.

HIGH 7.0-8.9

Exploitation is more difficult but could cause elevated

privileges and potentially a loss of data or downtime.

It is advised to form a plan of action and patch as soon as

possible.

MEDIUM 4.0-6.9

Vulnerabilities exist but are not exploitable or require extra

steps such as social engineering.

It is advised to form a plan of action and patch after

high-priority issues have been resolved.

LOW 0.1-3.9

Vulnerabilities are non-exploitable but would reduce an

organization’s attack surface.

It is advised to form a plan of action and patch during the

next maintenance window.

INFO N/A

No vulnerability exists. Additional information is provided

regarding items noticed during testing, strong controls,

and additional documentation.

© 2024 CyStack. All rights reserved. 16

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Appendix B – Vulnerability Categories

CyStack uses CWE (Common Weakness Enumeration) for the vulnerability categorization. Common

Weakness Enumeration (CWE) is a community-developed list of common software securityweaknesses.

It serves as a common language, a measuring stick for software security tools, and as a baseline for

weakness identification, mitigation, and prevention efforts.

CWE categories used by CyStack are listed in the following table:

CWE ID Name

CWE-16 Security Misconfiguration

CWE-77, CWE-259 Insecure OS Firmware

CWE-79 Cross-Site Scripting (XSS)

CWE-310 Broken Cryptography

CWE-311, CWE-319 Insecure Data Transport

CWE-352 Cross-Site Request Forgery (CSRF)

CWE-359 Privacy Concerns

CWE-400 Application Level Denial Of Service (DoS)

CWE-601 Unvalidated Redirects And Forwards

CWE-693 Lack Of Binary Hardening

CWE-723 Broken Access Control

CWE-729, CWE-922 Insecure Data Storage

CWE-919 Mobile Security Misconfiguration

CWE-929 Injection

CWE-930 Broken Authentication And Session Management

CWE-934 Sensitive Data Exposure

CWE-937 Using Components With Known Vulnerabilities

© 2024 CyStack. All rights reserved. 17

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Appendix C – Security Assessment For Source Code Review

Test ID Test name Status

SCR_CONF Configuration and Deploy Management Testing Pass

SCR_CONF_1 Test Network Infrastructure Configuration Pass

SCR_CONF_2 Test Application Platform Configuration Pass

SCR_CONF_3 Test File Extensions Handling for Sensitive Information N/A

SCR_CONF_4 Test HTTP Methods Pass

SCR_CONF_5 Test HTTP Strict Transport Security Pass

SCR_CONF_6 Test File Permission Pass

SCR_IDNT Identity Management Testing Pass

SCR_IDNT_1 Test Role Definitions Pass

SCR_IDNT_2 Test User Registration Process N/A

SCR_IDNT_3 Test Account Provisioning Process N/A

SCR_ATHN Authentication Testing Pass

SCR_ATHN_1 Testing for Credentials Transported over an Encrypted Channel Pass

SCR_ATHN_2 Testing for Default Credentials N/A

SCR_ATHN_3 Testing for Weak Lock Out Mechanism N/A

SCR_ATHN_4 Testing for Bypassing Authentication Schema Pass

SCR_ATHN_5 Testing for Weak Password Policy N/A

SCR_ATHN_6 Testing for Weak Password Change or Reset Functionalities N/A

SCR_ATHN_7 Testing for Weaker Authentication in Alternative Channel Pass

SCR_ATHZ Authorization Testing Pass

SCR_ATHZ_1 Testing Directory Traversal File Include Pass

SCR_ATHZ_2 Testing for Bypassing Authorization Schema Pass

SCR_ATHZ_3 Testing for Privilege Escalation Pass

SCR_SESS Session Management Testing Pass

SCR_SESS_1 Testing for Session Management Schema Pass

SCR_SESS_2 Testing for Session Fixation Pass

© 2024 CyStack. All rights reserved. 18

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

SCR_SESS_3 Testing for Exposed Session Variables Pass

SCR_SESS_4 Testing for Logout Functionality N/A

SCR_SESS_5 Testing Session Timeout Pass

SCR_SESS_6 Testing for Session Puzzling Pass

SCR_SESS_7 Testing for Session Hijacking Pass

SCR_INPV Input Validation Testing Pass

SCR_INPV_1 Testing for HTTP Verb Tampering Pass

SCR_INPV_2 Testing for HTTP Parameter pollution Pass

SCR_INPV_3 Testing for SQL Injection Pass

SCR_INPV_4 Testing for SSI Injection Fail

SCR_INPV_5 Testing for Code Injection Pass

SCR_INPV_6 Testing for Command Injection Pass

SCR_INPV_7 Testing for Format String Injection Pass

SCR_INPV_8 Testing for Incubated Vulnerabilities Pass

SCR_INPV_9 Testing for HTTP Splitting Smuggling Pass

SCR_INPV_10 Testing for HTTP Incoming Requests Pass

SCR_INPV_11 Testing for Host Header Injection Pass

SCR_ERRH Error Handling Pass

SCR_ERRH_1 Testing for Improper Error Handling Pass

SCR_CRYP Cryptography Pass

SCR_CRYP_1 Testing for Weak Transport Layer Security N/A

SCR_CRYP_2 Testing for Padding Oracle Pass

SCR_CRYP_3 Testing for Sensitive Information Sent Via Unencrypted Channels Pass

SCR_CRYP_4 Testing for Weak Encryption Pass

SCR_BUSL Business Logic Testing Pass

SCR_BUSL_1 Test Business Logic Data Validation Pass

SCR_BUSL_2 Test Ability to Forge Requests Pass

SCR_BUSL_3 Test Integrity Checks Pass

© 2024 CyStack. All rights reserved. 19

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

SCR_BUSL_4 Test for Process Timing Pass

SCR_BUSL_5 Test Number of Times a Function Can be Used Limits Pass

SCR_BUSL_6 Testing for the Circumvention of Work Flows Pass

SCR_BUSL_7 Test Defenses Against Application Misuse Pass

SCR_BUSL_8 Test Upload of Unexpected File Types Pass

SCR_BUSL_9 Test Upload of Malicious Files Pass

SCR_CLNT Client-side Testing Pass

SCR_CLNT_1 Testing for Client-side Resource Manipulation Pass

LEGEND

Pass: Requirement is applicable to thegiven source codeand implemented according tobest practices.

Fail: Requirement is applicable to the given source code but not fulfilled.

N/A: Requirement is not applicable to the given source code.

© 2024 CyStack. All rights reserved. 20

	Executive Summary
	Key Findings
	Limitations
	Assessment Components

	Methodology
	Dashboard
	Recommendations
	Code Review Details
	Steps to Conduct
	Manual Review Results

	Vulnerability Details
	Appendix
	Appendix A – Vulnerability Severity Ratings
	Appendix B – Vulnerability Categories
	Appendix C – Security Assessment For Source Code Review

