
CONFIDENTIAL

CYBERSECURITY AUDIT
REPORT
Version v1.1

This document details the process and results of the smart contract audit performed by CyStack from

02/11/2023 to 10/11/2023.

Audited for

Vay Network Services Private Limited

Audited by

Vietnam CyStack Joint Stock Company

© 2023 CyStack. All rights reserved.

Portions of this document and the templates used in its production are the property of CyStack and cannot be copied (in full

or in part) without CyStack’s permission.

While precautions have been taken in the preparation of this document, CyStack the publisher, and the author(s) assume no

responsibility for errors, omissions, or for damages resulting from the use of the information contained herein. Use of

CyStack’s services does not guarantee the security of a system, or that computer intrusions will not occur.

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Contents

1 Introduction 4

1.1 Audit Details . 4

1.2 Audit Goals . 6

1.3 Audit Methodology . 6

1.4 Audit Scope . 8

2 Executive Summary 9

3 Detailed Results 11

4 Conclusion 21

5 Appendices 22

Appendix A – Security Issue Status Definitions . 22

Appendix B – Severity Explanation . 23

Appendix C – Smart Contract Weakness Classification 24

© 2023 CyStack. All rights reserved. 1

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Disclaimer

Smart Contract Audit only provides findings and recommendations for an exact commitment of a

smart contract codebase. The results, hence, are not guaranteed tobe accurate outsideof the commitment,

or after any changesormodificationsmade to the codebase. Theevaluation result does not guarantee

the nonexistence of any further findings of security issues.

Time-limited engagements do not allow for a comprehensive evaluation of all security controls, so this

audit does not give anywarranties on finding all possible security issues of the given smart contract(s).

CyStack prioritized the assessment to identify the weakest security controls an attacker would exploit.

We recommend Vay Network Services Private Limited conducting similar assessments on an annual

basis by internal, third-party assessors, or a public bug bounty program to ensure the security of smart

contract(s).

This security audit should never be used as an investment advice.

Version History

Version Date Release notes

1.0 11/11/2023 The first report was sent to the client.

Most findings were unresolved.

1.1 24/11/2023 All accepted findings were resolved.

© 2023 CyStack. All rights reserved. 2

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Contact Information

Company Representative Position Email address

Vay Network Services

Private Limited

Vineet Mago VP vineet@vayana.com

CyStack Nguyen Ngoc Anh Sales Manager anhntn@cystack.net

Auditors

Fullname Role Email address

Nguyen Huu Trung Head of Security trungnh@cystack.net

Nguyen Ba Anh Tuan Auditor

Vu Trong Khoi Auditor

Ha Minh Chau Auditor

Nguyen Van Huy Auditor

© 2023 CyStack. All rights reserved. 3

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Introduction
From 02/11/2023 to 10/11/2023, Vay Network Services Private Limited engaged CyStack to evaluate

the security posture of the VDP Digital Assets Lending Platform of their contract system. Our findings

and recommendations are detailed here in this initial report.

1.1 Audit Details

Audit Target

In this audit project, CyStack focused on smart contracts belongs to the VDP Digital Assets Lending

Platform of Vay Network Services Private Limited.

The basic information of Vay Network’s smart contracts is as follows:

Item Description

Project Name VDP Digital Assets Lending Platform (Bitbucket: vayana/vdp-contracts-shared)

Issuer Vay Network Services Private Limited

Website https://vayana.com/

Platform N/A

Language Solidity

Codebase
https://bitbucket.org/vayana/vdp-contracts-shared/src/700c6e513f01f907182a

427ab0fb54db3128445f/contracts/

Commit 700c6e513f01f907182a427ab0fb54db3128445f

Audit method Whitebox

© 2023 CyStack. All rights reserved. 4

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

VDP Digital Assets Lending Platform is constructed with the following main contracts:

1. Libraries contracts: These are contracts that support main functional contracts in the system.

Accountant.solhelpsmonitor andmanage loan states andpayments schedules. Validation.sol

provides validation methods. Utils.sol defines actual arithmetic financial calculations for the

lending system.

2. AccessController.sol, AccessControlVerifier.sol, AccessControlVerifierPausable.sol,

GlobalConfig.sol and ProviderAccessManager.sol: These contracts provide access control

and the associated action to each role in the system. Roles are classified into Admin, Upgrader,

Platform Admin and Provider.

3. LoanRegistry.solmanages and monitors loan information of each borrower.

4. Migration.sol is an utility contract that records successful migration.

5. ParticipantRegistry.sol is a contract for Provider and is implemented to keep trackof participant

ID through ERC721 tokens.

6. TermLoanAccount.sol is designed to manage individual term loans within a decentralized

system. It facilitates the lifecycle of a loan, from activation and drawdown to repayment and

potential default or write-off. The contract is part of a larger system that involves multiple

contracts working together.

7. TermLoanActivations.solmanages the activation anddeployment of term loans in adecentralized

system. The contract facilitates the creation, update, acceptance, and rejectionof loan activation

requests. It works in conjunction with other contracts and interfaces to deploy corresponding

loan accounts and vaults.

8. TermLoanVault.sol serves as a smart contractmanaging the funding andwithdrawal processes

for a decentralized lending system. The contract handles contributions from investors, tracks

treasury deposits, and facilitates the withdrawal of funds.

9. WriteOff.sol helps decide to forgive or cancel unpaid loans through votes.

© 2023 CyStack. All rights reserved. 5

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Audit Service Provider

CyStack is a leading security company in Vietnam with the goal of building the next generation of

cybersecurity solutions to protect businesses against threats from the Internet. CyStack is a member

of Vietnam Information Security Association (VNISA) and Vietnam Alliance for Cybersecurity Products

Development.

CyStack’s researchers are known as regular speakers at well-known cybersecurity conferences such

as BlackHat USA, BlackHat Asia, Xcon, T2FI, etc. and are talented bug hunters who discovered critical

vulnerabilities in global products and acknowledged by their vendors.

1.2 Audit Goals

The focus of the audit was to verify that the smart contract system is secure, resilient and working

according to its specifications. The audit activities can be grouped in the following three categories:

1. Security: Identifying security related issueswithin each contract andwithin the systemof contracts.

2. SoundArchitecture: Evaluationof the architectureof this system through the lens of established

smart contract best practices and general software best practices.

3. Code Correctness and Quality: A full review of the contract source code. The primary areas

of focus include:

• Correctness

• Readability

• Sections of code with high complexity

• Improving scalability

• Quantity and quality of test coverage

1.3 Audit Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating

Methodology:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in

the wild;

• Impactmeasures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: High, Medium and Low, i.e., H, M and L

respectively. Severity is determinedby likelihoodand impact and canbe classified into four categories

accordingly, i.e., Critical, Major, Medium, Minor and Informational (Info) as the table below:

© 2023 CyStack. All rights reserved. 6

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

High Critical Major Medium
Im

p
ac

t

Medium Major Medium Minor

Low Medium Minor Informational

High Medium Low

Likelihood

CyStack firstly analyses the smart contract with open-source and also our own security assessment

tools to identify basic bugs related to general smart contracts. These tools include Slither, securify,

Mythril, Sūrya, Solgraph, Truffle, Geth, Ganache, Mist, Metamask, solhint, mythx, etc. Then, our

security specialists will verify the tool results manually, make a description and decide the severity

for each of them.

After that, we go through a checklist of possible issues that could not be detected with automatic

tools, conduct test cases for each and indicate the severity level for the results. If no issues are found

after manual analysis, the contract can be considered safe within the test case. Else, if any issues

are found, we might further deploy contracts on our private testnet and run tests to confirm the

findings. We would additionally build a PoC to demonstrate the possibility of exploitation, if required

or necessary.

The standard checklist, which applies for every SCA, strictly followsCyStack’s SmartContractWeakness

Classification. This classification is built, strictly following the Smart Contract Weakness Classification

Registry (SWCRegistry), and is updated frequently according to themost recent emerging threats and

new exploit techniques. The checklist of testing according to this classification is shown in Appendix

C.

In general, the auditing process focuses on detecting and verifying the existence of the following

issues:

• Data Issues: Finding bugs in data processing, such as improper names and labels for variables,

incorrect inheritance orders and unsafe calculations.

• Description Issues: Checking for improper controls of user input that leads tomalicious output

rendering.

• Environment Issues: Inspecting errors related to the environment of some specific Solidity

versions.

• Interaction Issues: Reviewing the interaction of different smart contracts to locate bugs in

handling external calls and controlling the balance and flows of token transfers.

• Interface Issues: Investigating the misusage of low-level and token interfaces.

• Logic Issues: Testing the code logic and error handlings in the smart contract code base, such

as self-DoS attacks, verifying strong randomness, etc.

© 2023 CyStack. All rights reserved. 7

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

• Performance Issues: Identifying the occurrence of improper byte padding, unused functions

and other issues that leads to high gas consumption.

• Security Issues: Finding common security issues of the smart contract(s), for example integer

overflows, insufficient verification of authenticity, improper use of cryptographic signature, etc.

• Standard Issues: Focusingon identifying codingbugs related togeneral smart contract coding

conventions and practices.

The final report will be sent to the smart contract issuer with an executive summary for overview and

detailed results for acts of remediation.

1.4 Audit Scope

Assessment Target Type

Original target (commit: 700c6e513f01f907182a427ab0fb54db3128445f)

White-box testing /src/contracts/Interfaces/ *.sol Solidity code files

White-box testing /src/contracts/Libraries/ *.sol Solidity code files

White-box testing /src/contracts/*.sol Solidity code files

Re-test target (commit: acdcb7ede64682091c6f874f5e393ecbac984337)

White-box testing /src/contracts/Interfaces/ *.sol Solidity code files

White-box testing /src/contracts/Libraries/ *.sol Solidity code files

White-box testing /src/contracts/*.sol Solidity code files

© 2023 CyStack. All rights reserved. 8

https://bitbucket.org/vayana/vdp-contracts-shared/src/700c6e513f01f907182a427ab0fb54db3128445f/contracts/Interfaces/
https://bitbucket.org/vayana/vdp-contracts-shared/src/700c6e513f01f907182a427ab0fb54db3128445f/contracts/Libraries/
https://bitbucket.org/vayana/vdp-contracts-shared/src/700c6e513f01f907182a427ab0fb54db3128445f/contracts/
https://bitbucket.org/vayana/vdp-contracts-shared/src/acdcb7ede64682091c6f874f5e393ecbac984337/contracts/Interfaces/
https://bitbucket.org/vayana/vdp-contracts-shared/src/acdcb7ede64682091c6f874f5e393ecbac984337/contracts/Libraries/
https://bitbucket.org/vayana/vdp-contracts-shared/src/acdcb7ede64682091c6f874f5e393ecbac984337/contracts/

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Executive Summary
Security issues by severity

1

2

3

Legend

Critical

Major

Medium

Minor

Info

Security issues by categories

Denial of Service (DoS) (SLD-602) 1

Business Logic (SLD-605) 2

Gas Consumption (SLD-701) 1

Maintainability (SLD-901) 1

Programming (SLD-902) 1

Table of security issues

ID Status Vulnerability Severity

#vayana-006 Resolved
Potential Denial of Service by block gas

limit
MEDIUM

#vayana-001 Resolved Missing zero address validation MINOR

#vayana-002 Resolved Floating pragma INFO

#vayana-005 Resolved Boolean equality INFO

#vayana-003 Rejected
Missing input validations in setter

functions
MINOR

#vayana-004 Rejected Gas optimization with error statements INFO

© 2023 CyStack. All rights reserved. 9

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Recommendations

Basedon the results of this smart contract audit, CyStack has the followinghigh-level key recommendations:

Key recommendations

Issues

CyStack conducted security audit for different contracts in VDPDigital Assets

Lending Platform. No issues with severity higher than Medium had been

found. A total of six issues were found, related to logic errors, coding

conventions and performance.

Currently, all four accepted findings are unresolved.

Recommendations

CyStack recommends Vay Network Services Private Limited to evaluate the

audit results with several different security audit third-parties for the most

accurate conclusion.

References

• https://consensys.github.io/smart-contract-best-practices/known_att

acks

• https://consensys.github.io/smart-contract-best-practices/recommen

dations/

• https://medium.com/@knownsec404team/ethereum-smart-contract-

audit-checklist-ba9d1159b901

© 2023 CyStack. All rights reserved. 10

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Detailed Results

1. Potential Denial of Service by block gas limit

Issue ID #vayana-006

Category Logic Issues - Denial of Service (DoS)

Description

Every transaction in Ethereum requires 21000 gas on top of the computations

made in the contract. An Ethereum block has a maximum limit of 30 million

gas. Exceeding this limit will cause the transaction to be reverted. If not properly

managed, this can render certain functions of the contract inoperable. Either the

array growsover time, or amalicious actor can accumulate a largenumber of loans

and facilitate a DoS attack.

Severity MEDIUM

Location(s) LoanRegistry.sol: 33, 246, 248, 253, 261, 264-265, 268-269

Status Resolved

Remediation

Either impose a limit on array size, or avoid having large arrays that grow over time

and looping across the entire data structure.

If the above is not feasible, plan for operations over such arrays to spread over

multiple blocks, and therefore require multiple transactions.

Description

borrowerLoans is a mapping from an uint256 (borrower’s id) to an array of Loan structure.

…
33 mapping(uint256 => Loan[]) public borrowerLoans; // Tracking all loans for particular borrower
…

© 2023 CyStack. All rights reserved. 11

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

There’s no limit on the Loan array’s size, nor does any operation on borrowerLoans have batch

processing mechanism implemented in case the size of Loan array grows too large:

…
118 function markNPA(Loan calldata loan) external onlyRole(LOAN_ADMIN_ROLE, accessManager) {
119 require(IActivations(loan.loanActivationsAddress).isValidLoan(loan), "Invalid loan");
120 require(IActivations(loan.loanActivationsAddress).checkNPA(loan), "Loan does not meet NPA

conditions");↪→

121 uint256 borrower = IActivations(loan.loanActivationsAddress).getBorrower(loan);
122
123 uint256 length = borrowerLoans[borrower].length;
124 for (uint16 i; i < length; i++) {
125 ITermLoanActivations(loan.loanActivationsAddress).markNPA(borrowerLoans[borrower][i]);
126 }
127
128 _pauseBorrower(borrower);
129 }

…

…
245 function _unmarkNPAAll(address activation, uint256 borrower) internal {
246 uint256 length = borrowerLoans[borrower].length;
247 for (uint256 i; i < length; i++) {
248 if (ITermLoanActivations(activation).checkNPA(borrowerLoans[borrower][i])) {
249 return;
250 }
251 }
252 for (uint256 i; i < length; i++) {
253 ITermLoanActivations(activation).unmarkNPA(borrowerLoans[borrower][i]);
254 }
255 if (!hasNPAOrDefault(borrower)) {
256 _unpauseBorrower(borrower);
257 }
258 }

…

…
260 function hasNPAOrDefault(uint256 borrower) internal view returns (bool) {
261 uint256 length = borrowerLoans[borrower].length;
262 for (uint256 i; i < length; i++) {
263 if (
264 IActivations(borrowerLoans[borrower][i].loanActivationsAddress).getLoanStatus(
265 borrowerLoans[borrower][i]
266) ==
267 IAccount.Status.NPA ||
268 IActivations(borrowerLoans[borrower][i].loanActivationsAddress).getLoanStatus(
269 borrowerLoans[borrower][i]
270) ==
271 IAccount.Status.Default
272) {
273 return true;
274 }
275 }
276 return false;
277 }

…

© 2023 CyStack. All rights reserved. 12

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

2. Missing zero address validation

Issue ID #vayana-001

Category Logic Issues - Business Logic

Description
The function changeFactory is lack of zero address check for newFactory, which

may cause unexpected results.

Severity MINOR

Location(s) TermLoanActivations.sol: 313-317

Status Resolved

Remediation Add check of zero address before using newFactory in any operation.

Description

The codelines where the issue occurs:

…
313 function changeFactory(bool factoryType, address newFactory) external

onlyRole(UPGRADER_ROLE, accessManager) {↪→

314 if (factoryType) {
315 vaultFactory = newFactory;
316 } else accountFactory = newFactory;
317 }

…

The codebase can be improved as following:

…
920 function changeFactory(bool factoryType, address newFactory) external

onlyRole(UPGRADER_ROLE, accessManager) {↪→

921 require(newFactory != address(0), "newFactory cannot be address(0)");
922 if (factoryType) {
923 vaultFactory = newFactory;
924 } else accountFactory = newFactory;
925 }
926

© 2023 CyStack. All rights reserved. 13

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

3. Floating pragma

Issue ID #vayana-002

Category Standard Issues - Maintainability

Description

Contracts should be deployed with the same compiler version and flags that

they have been tested with thoroughly. Locking the pragma helps to ensure

that contracts do not accidentally get deployed using, for example, an outdated

compiler version that might introduce bugs that affect the contract system

negatively.

Severity INFO

Location(s) Interfaces/IVault.sol: 2

Status Resolved

Remediation

It is recommended to use a fixed pragma version, as future compiler versions may

handle certain language constructions in a way the developer did not foresee.

Using a floating pragma may introduce several vulnerabilities if compiled with an

older version.

Description

The codeline where floating pragma is used:

…
2 pragma solidity ^0.8.17;
…

The code can be revised as written below:

…
2 pragma solidity 0.8.17; // or any version according to the version requirements from

libraries, the latest (0.8.23) is preferable↪→

…

© 2023 CyStack. All rights reserved. 14

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

4. Boolean equality

Issue ID #vayana-005

Category Standard Issues - Programming

Description

Boolean constants can be used directly in conditionals like if and else statements.

In several contracts, some conditionals are set with comparisons between a

boolean constant and the value true (or false).

Severity INFO

Location(s)

TermLoanAccount.sol: 182, 225, 249, 297

TermLoanActivations.sol: 303, 439

TermLoanVault.sol: 189, 256, 458

Status Resolved

Remediation It is recommended to use boolean constants directly.

Description

The codelines where these issues occur:

TermLoanAccount.sol

…
182 require(externalIdUsed[externalId] == false, "External ID already used");

…
225 require(externalIdUsed[externalId] == false, "External ID already used");

…
249 require(externalIdUsed[externalId] == false, "External ID already used");

…
297 require(externalIdUsed[externalId] == false, "External ID already used");

…

TermLoanActivations.sol

…
303 require(externalIdUsed[externalId] == false, "External ID already used");

…
439 require(externalIdUsed[externalId] == false, "External ID already used");

…

TermLoanVault.sol

…
189 require(externalIdUsed[externalId] == false, "External ID already used");

…
256 require(externalIdUsed[externalId] == false, "External ID already used");

…
458 require(externalIdUsed[externalId] == false, "External ID already used");

…

© 2023 CyStack. All rights reserved. 15

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

The issue can be resolved as follows:

TermLoanAccount.sol

…
182 require(!externalIdUsed[externalId], "External ID already used");

…
225 require(!externalIdUsed[externalId], "External ID already used");

…
249 require(!externalIdUsed[externalId], "External ID already used");

…
297 require(!externalIdUsed[externalId], "External ID already used");

…

TermLoanActivations.sol

…
303 require(!externalIdUsed[externalId], "External ID already used");

…
439 require(!externalIdUsed[externalId], "External ID already used");

…

TermLoanVault.sol

…
189 require(!externalIdUsed[externalId], "External ID already used");

…
256 require(!externalIdUsed[externalId], "External ID already used");

…
458 require(!externalIdUsed[externalId], "External ID already used");

…

© 2023 CyStack. All rights reserved. 16

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

5. Missing input validations in setter functions

Issue ID #vayana-003

Category Logic Issues - Business Logic

Description

Values passed into setter functions by msg.sender should always be validated

to ensure that no unexpected behaviours might occur. Without validation, an

arbitrary user may manipulate contract data or execute functions with malicious

intent.

Severity MINOR

Location(s) Libraries/Accountant.sol: 420, 448

Status Rejected

Remediation

Always add a check for values from msg.sender in setter functions to ensure that

the changes in smart contract data are legitimate. It is recommended to have

these functions reviewed by professionals and covered by unit tests.

Description

The codelines where input validations are missing:

…
415 function setLoanVariables(
416 ITermLoanAccount.ComputationVariables memory loanState,
417 ITermLoanActivations.LoanManagement memory loanVars,
418 uint64 loanCreationTimestamp
419) public pure returns (ITermLoanAccount.ComputationVariables memory) {
420 loanState.pendingPrincipalPayments = loanVars.noOfPrincipalPayments;

…
437 }

…

…
439 function setRecalledState(
440 ITermLoanAccount.ComputationVariables memory loanState,
441 ITermLoanActivations.LoanManagement memory loanVars,
442 uint64 loanCreationTimestamp
443) external view returns (ITermLoanAccount.ComputationVariables memory) {

…
445 uint256 principal = loanState.outstandingPrincipal;
446 (, uint256 interestDue, uint256 overduePenalty, uint256 remWaiveOff) = getTotalPendingAmount(
447 loanState,
448 loanVars,
449 currTime,
450 loanCreationTimestamp
451);

…
464 }

…

© 2023 CyStack. All rights reserved. 17

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

The issue can be resolved by adding require statements before the operations:

…
415 function setLoanVariables(
416 ITermLoanAccount.ComputationVariables memory loanState,
417 ITermLoanActivations.LoanManagement memory loanVars,
418 uint64 loanCreationTimestamp
419) public pure returns (ITermLoanAccount.ComputationVariables memory) {
420 require(loanVars.noOfPrincipalPayments > 0, "Invalid value for loanVars.noOfPrincipalPayments");
421 loanState.pendingPrincipalPayments = loanVars.noOfPrincipalPayments;

…
439 }

…

…
439 function setRecalledState(
440 ITermLoanAccount.ComputationVariables memory loanState,
441 ITermLoanActivations.LoanManagement memory loanVars,
442 uint64 loanCreationTimestamp
443) external view returns (ITermLoanAccount.ComputationVariables memory) {

…
445 require(loanState.outstandingPrincipal > 0, "Invalid value for loanState.outstandingPrincipal")
446 uint256 principal = loanState.outstandingPrincipal;
447 (, uint256 interestDue, uint256 overduePenalty, uint256 remWaiveOff) = getTotalPendingAmount(
448 loanState,
449 loanVars,
450 currTime,
451 loanCreationTimestamp
452);

…
465 }

…

Updated on re-test targets

The functions setLoanVariables/setRecalledStatewere renamed to computeLoanVariables/computeRecalledState

as these are pure/view functions but had misleading names.

© 2023 CyStack. All rights reserved. 18

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

6. Gas optimization with error statements

Issue ID #vayana-004

Category Performance Issues - Gas Consumption

Description

Revert() statements are used in the contracts listed below.

Since Solidity v0.8.4, custom errors have been introduced as better alternatives

to revert statements. Developers can pass custom errors with dynamic data while

reverting the transaction, in addition to making the whole implementation a bit

cheaper than using revert.

Severity INFO

Location(s)

Libraries/Accountant.sol: 51, 176

TermLoanAccount.sol: 189

TermLoanVault.sol: 171

Status Rejected

Remediation It is recommended to replace revert statements with error statements to save gas.

Description

The codelines where these issues occur:

Libraries/Accountant.sol

…
51 isClosed ? revert("Amount exceeds foreclosure amount") : (payment, installmentFees, isClosed)

= prePayment(↪→

52 amount,
53 payment,
54 loanVars,
55 paymentId
56);
…
… if (payment.outstandingPrincipal < amount) revert("Amount exceeds foreclosure amount");

177

TermLoanAccount.sol

…
187 if (penaltyType == WaiveOff.Overdue) loanState.overdueWaiveOff = value;
188 else if (penaltyType == WaiveOff.Prepayment) loanState.prepaymentWaiveOff = value;
189 else revert("Invalid Penalty Type");

…

© 2023 CyStack. All rights reserved. 19

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

TermLoanVault.sol

…
164 if (currentSupply == capacity) {
165 require(_isWithinDrawdownPeriod(), "Cannot make drawdown after drawdown period");
166 _drawdown(activations.getBorrower(activationId));
167 } else if (currentSupply >= (capacity * drawdownThreshold) / 10000) {
168 require(!_isWithinFundingPeriod(), "Cannot make partial drawdown during funding period");
169 require(_isWithinDrawdownPeriod(), "Cannot make partial drawdown after drawdown period");
170 _drawdown(activations.getBorrower(activationId));
171 } else revert("Insufficient supply");

…

Use error() instead of revert() to optimize gas consumption:

Libraries/Accountant.sol

…
51 isClosed ? revert("Amount exceeds foreclosure amount") : (payment, installmentFees, isClosed)

= prePayment(↪→

52 amount,
53 payment,
54 loanVars,
55 paymentId
56);
…
… if (payment.outstandingPrincipal < amount) error("Amount exceeds foreclosure amount");

177

TermLoanAccount.sol

…
187 if (penaltyType == WaiveOff.Overdue) loanState.overdueWaiveOff = value;
188 else if (penaltyType == WaiveOff.Prepayment) loanState.prepaymentWaiveOff = value;
189 else error("Invalid Penalty Type");

…

TermLoanVault.sol

…
164 if (currentSupply == capacity) {
165 require(_isWithinDrawdownPeriod(), "Cannot make drawdown after drawdown period");
166 _drawdown(activations.getBorrower(activationId));
167 } else if (currentSupply >= (capacity * drawdownThreshold) / 10000) {
168 require(!_isWithinFundingPeriod(), "Cannot make partial drawdown during funding period");
169 require(_isWithinDrawdownPeriod(), "Cannot make partial drawdown after drawdown period");
170 _drawdown(activations.getBorrower(activationId));
171 } else error("Insufficient supply");

…

Updated on re-test targets

No changes were made since the remediation for this finding will cause a major impact on UI and

other dependent components.

© 2023 CyStack. All rights reserved. 20

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Conclusion
CyStack had conducted a security audit for Vay Network Services Private Limited’s smart contracts. A

total of six issues were found, but none of these issues represented critical bugs or security problems.

Four of these issues then were accepted by the Vay Network Services Private Limited team. After

a re-test on the new codebase for Vay Network Services Private Limited’s smart contracts, CyStack

confirmed that all found issues were resolved. No new issues were found for the additional functions

in the smart contracts. Overall, the audited smart contracts have included the best practices for smart

contract development and have passed our security assessment for smart contracts.

To improve the quality of this report, and for CyStack’s Smart Contract Audit report in general, we

greatly appreciate any constructive feedback or suggestions, on our methodology, audit findings, or

potential gaps in scope/coverage.

© 2023 CyStack. All rights reserved. 21

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Appendices

Appendix A – Security Issue Status Definitions

Status Definition

Open
The issue has been reported and currently being review by the smart

contract developers/issuer.

Unresolved
The issue is acknowledged and planned to be addressed in future. At the

time of the corresponding report version, the issue has not been fixed.

Resolved
The issue is acknowledged and has been fully fixed by the smart contract

developers/issuer.

Rejected

The issue is considered to have no security implications or to make only

little security impacts, so it is not planned to be addressed and won’t be

fixed.

© 2023 CyStack. All rights reserved. 22

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Appendix B – Severity Explanation

Severity Definition

CRITICAL

Issues, considered as critical, are straightforwardly exploitable bugs and

security vulnerabilities.

It is advised to immediately resolve these issues in order to prevent major

problems or a full failure during contract system operation.

MAJOR

Major issues are bugs and vulnerabilities, which cannot be exploited

directly without certain conditions.

It is advised to patch the codebase of the smart contract as soon as

possible, since these issues, with a high degree of probability, can cause

certain problems for operation of the smart contract or severe security

impacts on the system in some way.

MEDIUM

In terms of medium issues, bugs and vulnerabilities exist but cannot be

exploited without extra steps such as social engineering.

It is advised to form a plan of action and patch after high-priority issues

have been resolved.

MINOR

Minor issues are generally objective in nature but do not represent actual

bugs or security problems.

It is advised to address these issues, unless there is a clear reason not to.

INFO

Issues, regarded as informational (info), possibly relate to “guides for the

best practices” or “readability”. Generally, these issues are not actual bugs

or vulnerabilities. It is recommended to address these issues, if it makes

effective and secure improvements to the smart contract codebase.

© 2023 CyStack. All rights reserved. 23

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

Appendix C – Smart Contract Weakness Classification

ID Name Description

Data Issues

SLD-101 Initialization

Check for Interger Division, Interger Overflow

and Underflow, Interger Sign, Interger Truncation

and Wrong Operator

SLD-102 Calculation

Check for State Variable Default Visibility, Hidden

Built-in Symbols, Hidden State Variables and

Incorrect Inheritance Order

SLD-103 Hidden Weaknesses
Check for Unintialized Local/State Variables and

Unintialized Storage Variables

Description Issues

SLD-201 Output Rendering Check for RightToLeftOverrideControl Character

Environment Issues

SLD-302 Supporting Software

Check for Deletion of Dynamic Array Elements

and Usage of continue Statements In do-while

-statements

Interaction Issues

SLD-401 Contract Call
Check for Delegatecall to Untrusted Callee,

Re-entrancy and Unhandled Exception

SLD-402 Ether Flow

Check for Unprotected Ether Withdrawal,

Unexpected Ether Balance, Locked Ether and

Pre-sent Ether

Interface Issues

SLD-501 Parameter

Check for Externally Controlled Call/delegatecall

Data/Address, Hash Collisions with Multiple

Variable Length Arguments, Short Address

Attack and Signature with Wrong Parameter

SLD-502 Token Interface Check for Non-standard Token Interface

Logic Issues

SLD-601 Assembly Code

Check for Arbitrary Jump with Function Type

Variable, Returning Results Using Assembly Code

in Constructor and Specifying Function Variable

as Any Type

© 2023 CyStack. All rights reserved. 24

CONFIDENTIAL CYBERSECURITY AUDIT REPORT

SLD-602 Denial of Service (DoS)

Check for potential DoS due to failed call, by

complex fallback function, by gaslimit and by

non-exsistent address or malicious contracts

SLD-603 Fairness Problems

Check for Weak Sources of Randomness from

ChainAttributes, Usageof Block Values asAProxy

for Time, Results of Contract Execution Affected

by Miners and Transaction Order Dependence

SLD-604 Storage Check for Storage Overlap Attack

SLD-605 Bussiness Logic Check for Business Logic errors in code

Performance Issues

SLD-701 Gas Consumption

Check for Gas Griefing, Byte Padding, Invariants

in Loop and Invariants for State Variables that are

not declared constant

Security Issues

SLD-801 Authority Control

Check for Write to Arbitrary Storage Location,

Replay Attack, Suicide Contract, Usage of

tx.origin for Authentication/Authorization,

Wasteful Contract and Wrong Constructor Name

SLD-802 Privacy

Check for Lack of Proper Signature Verification,

Signature Malleability, Non-public Variables that

are accessed by public/external functions and

Public Data

Standard Issues

SLD-901 Maintainability

Check for Implicit Visibility, Non-standard

Naming, The Use of Too Many Digits,

Unlimited/Outdated Compiler Versions and

Usage of Deprecated Built-in Symbols

SLD-902 Programming

Check for Code with No Effect, Message Call with

Hardcoded Gas Amount, Presence of Unused

Variables, View/Constant Functions that change

contract states and Improper Usage of require,

assert or revert

© 2023 CyStack. All rights reserved. 25

	Introduction
	Audit Details
	Audit Goals
	Audit Methodology
	Audit Scope

	Executive Summary
	Detailed Results
	Conclusion
	Appendices
	Appendix A – Security Issue Status Definitions
	Appendix B – Severity Explanation
	Appendix C – Smart Contract Weakness Classification

