
Trung Nguyen – CyStack Security

Security in the age of cloud services



› Security Reseacher with over 7 years experience in 

Security Industry

› Co-Founder & CTO at CyStack Security

› Discovered critical vulnerabilities and acknowledged 

by Microsoft, HP, Delloite…

Whoami



› AWS

› Docker

› Services exposed

Agenda





› IAM

› Services 

› Network 

› Instances (Virtual Machines, EC2) 

› Custom applications & 3rd party software

AWS Attack Vectors



Don’t generate access keys for root users.

› root user credentials allow full access to all resources 

in the account.

› Losing keys means losing the whole data

AWS Access Keys



Use Temporary Security Credentials (IAM Roles) 

Instead of Long-Term Access Keys

› When you don’t control the client (mobile, desktop 

app, etc).

› When you need to grant cross-account access.

AWS Access Keys



Manage IAM User Access Keys Properly

› Don't embed access keys directly into code, use 

credentials file or environment variables instead

› Use different access keys for different applications

› Rotate access keys periodically

› Remove unused access keys

› Configure multi-factor authentication for your most 

sensitive operations

AWS Access Keys



› IAM is the core service behind access management 

within the AWS environment.

› Misconfigurations of the service is the main source of 

vulnerabilities: privilege escalation or data exfiltration.

› AWS allows users to apply two kinds of policies: AWS 

managed policies and self-managed policies

IAM policy misuse



AWS managed policies can be even broken

IAM policy misuse

https://medium.com/ymedialabs-innovation/an-aws-managed-policy-that-allowed-granting-root-admin-access-to-any-role-51b409ea7ff0

https://medium.com/ymedialabs-innovation/an-aws-managed-policy-that-allowed-granting-root-admin-access-to-any-role-51b409ea7ff0


When a feature becomes a bug...

IAM policy misuse

> curl http://169.254.169.254/latest/meta-data
ami-id
ami-launch-index
ami-manifest-path
block-device-mapping/
events/
hostname
identity-credentials/
instance-action
instance-id
instance-type
local-hostname
local-ipv4
…



Let’s assume that we have a role that look goods and 

is attached to an EC2 instance

IAM policy misuse

{
"Effect": "Allow",
"Action": [

"iam:Create*",
"iam:Add*"

],
"Resource": [

"arn:aws:iam::12345678:user/*"
]

}



IAM policy misuse

> curl http://169.254.169.254/la
test/meta-data/iam/security-
credentials/<role-name>

{
"Code": "Success",
"LastUpdated": "2012-04-26T16:39:16Z",
"Type": "AWS-HMAC",
"AccessKeyId": "ASIAIOSFODNN7EXAMPLE",
"SecretAccessKey": "xxxxxxx",
"Token": "xxxxxxxx",
"Expiration": "2017-05-17T15:09:54Z"

}

Facebook.com

Proxy server

Meta-data server



› One of the most awesome services of AWS

› However, presumably, the most common cause of 

security breaches related to Amazon services, are 

misconfigurations of S3 buckets

› 7% of all S3 buckets have unrestricted public access

S3

https://www.bleepingcomputer.com/news/security/7-percent-of-all-amazon-s3-
servers-are-exposed-explaining-recent-surge-of-data-leaks/

https://www.bleepingcomputer.com/news/security/7-percent-of-all-amazon-s3-servers-are-exposed-explaining-recent-surge-of-data-leaks/


› Misconfiguration

S3 bucket breaches



› Misconfiguration

S3 bucket breaches



Now, attackers can:

› get access to list and read files in S3 bucket

› write/upload files to S3 bucket

› change access rights to all objects and control the 

content of the files

S3 bucket breaches



S3 bucket breaches



› Create a bucket named 

sub.company.com

› Enable the feature static web 

hosting then put static files to 

this bucket

S3 sub-domain take over



S3 sub-domain take over

sub.company.com.s3-website-ap-southeast-1.amazonaws.com
DNS CNAME

sub.company.com

› One day, you removed the bucket but didn’t update the 

DNS records

› And attackers can create a new bucket with the same 

name  Take control your sub-domain

› Not only you, Microsoft, Google and other big corp faced 

the same issue.



NOT YOUR SERVERS, NOT YOUR PROBLEMS?

Serverless

NOT QUITE…



› Event injection 

› Broken authentication 

› Insecure deployment settings

› Misuse of permissions and roles 

› Insufficient logging

› Insecure storing of app secrets

› DoS attacks and financial exhaustion

› Improper exception handling

Serverless





› Use Private or Trusted Repositories

› Prefer Docker Certified images

› Prefer minimal base images

Image Authenticity

https://hub.docker.com/search/?certification_status=certified&type=image


› docker run app --privileged

Privileges

gives all capabilities to the container, and it also lifts all the
limitations enforced by the device cgroup controller. In other
words, the container can then do almost everything that the
host can do. This flag exists to allow special use-cases, like
running Docker within Docker.



› By default, the application in container runs as root 

privileges

Privileges

RUN groupadd -r gooduser && useradd -m -r -g gooduser -s 
/sbin/nologin -c "create a good user" gooduser

USER gooduser

CMD ["python", "app.py"]



› docker run --read-only --tmpfs /tmp app

Read-only mode



› docker run --cpus=0.5 --memory=512m app

DDoS preventing



Services exposed



› kubectl proxy --address 0.0.0.0 --accept-hosts '.*'



› Tesla cloud resources are hacked to run 

cryptocurrency-mining malware



kibana.yml

server.port: 5601

server.host : 0.0.0.0



elasticsearch.yml

http.port: 9200

network.host: 0.0.0.0



Thanks !
trungnh@cystack.net
@everping 


