
1

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

Smart Contract
Audit Report
This document details the process and results of a Smart contract Audit performed by

CyStack on behalf of VNDC between January 01, 2021 and January 30, 2021

CONFIDENTIAL

PREPARED FOR VNDC HOLDING PTE LTD

JANUARY 30, 2021

2

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

Contents

Contact Information 3

Assessment Overview 4

Assessment Overview 9

Findings 11

Conclusion 24

Disclaimer 3

Confidentiality Statement 3

4About VIDB

9State of Security

11Overview

5About CyStack

10Recommendations

17Details

5Methodology

Appendix 25

25Basic Coding Bugs

27Semantic Consistency Checks

28Additional Recommendations

3

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

Confidentiality Statement

Disclaimer

This document is the exclusive property of VNDC and Viet Nam CyStack Joint Stock Company (CyStack). This document contains proprietary

and confidential information. Duplication, redistribution, or use, in whole or in part, in any form, requires the consent of both VNDC and CyStack.

CyStack may share this document with auditors under non-disclosure agreements to demonstrate audit requirement compliance.

Note that this audit does not give any warranties on finding all possible security issues of the given smart contract(s), i.e., the evaluation result does

not guarantee the nonexistence of any further findings of security issues. As one audit-based assessment cannot be considered comprehensive, we

always recommend proceeding with several independent audits and a public bug bounty program to ensure the security of smart contract(s). Last

but not least, this security audit should not be used as investment advice.

Contact Information

VNDC

CyStack

Vo Huyen Nhi

Name

Account Manager

Title

Email: nhivh@cystack.net

Contact Information

Vuong Le Vinh Nhan CEO

4

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

Assessment Overview
From January 01, 2021 to January 30, 2021, VNDC engaged CyStack to evaluate the security posture of the VIDB Token of their contract system.

The findings and recommendations are presented here in this initial report.

NOTE: The VNDC’s mitigation efforts of the audit findings are currently still in progress. The report will be subject to updates to reflect issues that

can be considered closed.

VIDB (VNDC International Digital Banking) is a utility token in the VNDC financial ecosystem, including: VNDC Wallet, VNDC Exchange, VNDC

Borrow, VNDC Staking, VNDC Farming, VNDC P2P,…VIDB is used for payment of transaction fees, collateral for partners, account rating,…

In addition, VIDB is considered as an asset presenting the value of the VNDC – a platform with more than 800,000 users and transaction volume

is over 150 million dollars (more than 3,000 billion VND) per month. Investors owning VIDB will be shared profit from VNDC business activities.

The basic information of VIDB is as follows:

In the scope of this project, CyStack focuses on audit the smart contract which allocated at :

https://etherscan.io/address/0xbfce0c7d3ba3a7f7a039521fe371a87bf84baad4#code

About VIDB

Item Description

Issuer

Source code

Platform

Website

Type

Audit Method

VNDC

https://etherscan.io/address/0xbfce0c7d3ba3a7f7a039521fe371a87bf84baad4#code

Solidity

https://vndc.io

Ethereum Smart Contract

Whitebox

Table 1: Basic information of VIDB Token

5

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

CyStack is a leading security company in Vietnam with the goal of building the next generation of cybersecurity solutions to protect businesses

against threats from the Internet. CyStack is a member of Vietnam Information Security Association (VNISA) and Vietnam Alliance for Cybersecurity

Products Development.

CyStack’s researchers are known as regular speakers at well-known cybersecurity conferences such as BlackHat USA, BlackHat Asia, Xcon, T2FI, etc

and are talented bug hunters who discovered critical vulnerabilities in global products and acknowledged by their vendors.

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating Methodology:

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and low respectively. Severity is determined by likelihood

and impact and can be classified into four categories accordingly, i.e., Critical, High, Medium, Low shown in Table 2.

To evaluate the risk, we go through a list of check items and each would be labeled with a severity category. For one check item, if our tool or

analysis does not identify any issue, the contract is considered safe regarding the check item. For any discovered issue, we might further deploy

contracts on our private testnet and run tests to confirm the findings. If necessary, we would additionally build a PoC to demonstrate the possibility

of exploitation. The concrete list of check items is shown in Table 3.

About CyStack

Methodology

Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in the wild

Impact measures the technical loss and business damage of a successful attack

Severity demonstrates the overall criticality of the risk

Critical High Medium

High

High

High

Medium

Low

Medium

Likelihood

Im
pa

ct

Low

Medium Low

Medium Low Info

Table 2: Vulnerability Severity Classification

6

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

Category

Basic Coding Bugs

Semantic Consistency Checks

Advanced DeFi Scrutiny

Check Item

Constructor Mismatch

Ownership Takeover

Redundant Fallback Function

Overflows & Underflows

Reentrancy

Money-Giving Bug

Blackhole

Unauthorized Self-Destruct

Revert DoS

Unchecked External Call

Gasless Send

Send Instead Of Transfer

Costly Loop

(Unsafe) Use Of Untrusted Libraries

(Unsafe) Use Of Predictable Variables

Transaction Ordering Dependence

Deprecated Uses

Business Logics Review

Functionality Checks

Authentication Management

Access Control & Authorization

Oracle Security

Digital Asset Escrow

Kill-Switch Mechanism

Semantic Consistency Checks

7

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

Category

Advanced DeFi Scrutiny

Additional Recommendations

Check Item

Operation Trails & Event Generation

ERC20 Idiosyncrasies Handling

Frontend-Contract Integration

Deployment Consistency

Holistic Risk Management

Avoiding Use of Variadic Byte Array

Using Fixed Compiler Version

Making Visibility Level Explicit

Making Type Inference Explicit

Adhering To Function Declaration Strictly

Following Other Best Practices

Table 3: The Full List of Check Items

In particular, we perform the audit according to the following procedure:

To better describe each issue we identified, we categorize the findings with Common Weakness Enumeration (CWE-699), which is a community-

developed list of software weakness types to better delineate and organize weaknesses around concepts frequently encountered in software

development. Though some categories used in CWE-699 may not be relevant in smart contracts, we use the CWE categories in Table 4 to classify

our findings.

Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static code analyzer for known coding bugs, and

then manually verify (reject or confirm) all the issues found by our tool.

Semantic Consistency Checks: We then manually check the logic of implemented smart contracts and compare with the description in

the white paper.

Advanced DeFi Scrutiny: We further review business logics, examine system operations, and place DeFi-related aspects under scrutiny to

uncover possible pitfalls and/or bugs.

Additional Recommendations: We also provide additional suggestions regarding the coding and development of smart contracts from

the perspective of proven programming practice.

8

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

Category Summary

Configuration

Numeric Errors

Time and State

Data Processing Issues

Security Features

Error Conditions, Return

Values, Status Codes

Business Logics

Behavioral Issues

Initialization and Cleanup

Expression Issues

Arguments and Parameters

Coding Practices

Resource Management

Weaknesses in this category are typically introduced during the configuration of the software.

Weaknesses in this category are related to improper calculation or conversion of numbers.

Weaknesses in this category are related to the improper management of time and state in an

environment that supports simultaneous or near-simultaneous computation by multiple systems,

processes, or threads.

Weaknesses in this category are typically found in functionality that processes data.

Weaknesses in this category are concerned with topics like authentication, access control,

confidentiality, cryptography, and privilege management. (Software security is not security software.)

Weaknesses in this category include weaknesses that occur if a function does not generate the correct

return/status code, or if the application does not handle all possible return/status codes that could be

generated by a function.

Weaknesses in this category identify some of the underlying problems that commonly allow attackers

to manipulate the business logic of an application. Errors in business logic can be devastating to an

entire application.

Weaknesses in this category are related to unexpected behaviors from code that an application uses.

Weaknesses in this category occur in behaviors that are used for initialization and breakdown.

Weaknesses in this category are related to incorrectly written expressions within code.

Weaknesses in this category are related to improper use of arguments or parameters within

function calls.

Weaknesses in this category are related to coding practices that are deemed unsafe and increase

the chances that an exploitable vulnerability will be present in the application. They may not directly

introduce a vulnerability, but indicate the product has not been carefully developed or maintained.

Weaknesses in this category are related to improper management of system resources.

Table 4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

9

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

Executive Summary

Here is a summary of our findings after analyzing the design and implementation of the VIDB Token. During the first phase of our audit, we study

the smart contract source code and run our in-house static code analyzer through the codebase. The purpose here is to statically identify known

coding bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually review business logics, examine system

operations, and place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

We have so far identified a list of potential issues: some of them involve subtle corner cases that might not be previously thought of, while

others refer to unusual interactions among multiple contracts. For each uncovered issue, we have therefore developed test cases for reasoning,

reproduction, and/or verification. After further analysis and internal discussion, we determined a few issues of varying severities that need to be

brought up and paid more attention to, which are categorized in the above table. More information can be found in the next subsection, and the

detailed discussions of each of them are in Section Findings.

State of Security

Vulnerabilities by Impact

High

1

3

2

0

4

5

Low InfoCritical Medium

Figure 1: Vulnerabilities by severity

10

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

Key Issue Overall, these smart contracts are well-designed and engineered, though the implementation can be

improved by resolving the identified issues (shown in Table 7) including 1 high-severity vulnerability, 1

low-severity vulnerability, and 5 informational recommendations.

Resources https://docs.soliditylang.org/en/latest/security-considerations.html

Recommendation Besides recommending specific countermeasures to mitigate these issues, we also emphasize that it is

always important to develop necessary risk-control mechanisms and make contingency plans, which

may need to be exercised before the mainnet deployment. The risk-control mechanisms need to kick

in at the very moment when the contracts are being deployed in mainnet. Please refer to the Findings

section for details.

KEY RECOMMENDATION

Based on the results of this audit, CyStack has the following high-level key recommendations

Recommendations

Table 5: Key Recommendation

11

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be improved by resolving the identified issues

(shown in Table 8). During the engagement, 7 unique vulnerabilities were found across 2 different vulnerability categories. Vulnerabilities of the

following kind were identified:

The following table shows a visualization of how assessment components performed against the most common types of vulnerabilities as defined

by the CWE Classifications :

Overview

Resource Management Coding Practices

Configuration

Numeric Errors

Resource Management

Arguments and Parameters

Time and State

Business Logics

Coding Practices

Data Processing Issues

Error Conditions, Return Values, Status Codes

Initialization and Cleanup

Security Features

Behavioral Issues

Expression Issues

0

0

1

0

0

0

6

0

0

0

0

0

0

CWE CATEGORY TEST RESULT FINDINGS

Table 6: Vulnerabilities by CWE category

12

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

#

Storage abiencoderv2 array

Modifying storage array by value

The order of parameters in a shift instruction is incorrect

Right-To-Left-Override control character is used

Uninitialized storage variables

Controlled delegatecall destination

Multiple constructor schemes

State variables shadowing

Unprotected upgradeable contract

Reentrancy vulnerabilities (theft of ethers)

Contract’s name reused

Functions allowing anyone to destruct the contract

Functions that send Ether to arbitrary destinations

Signed storage integer array compiler bug

Detect dangerous enum conversion

Public mappings with nested variables

Uninitialized state variables

Tainted array length assignment

Weak PRNG

abiencoderv2-array

array-by-reference

incorrect-shift

rtlo

uninitialized-storage

controlled-delegatecall

multiple-constructors

shadowing-state

unprotected-upgrade

reentrancy-eth

name-reused

suicidal

arbitrary-send

storage-array

enum-conversion

public-mappings-nested

uninitialized-state

controlled-array-length

weak-prng

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

VIDB-001

Passed

1

2

3

7

11

15

4

8

12

16

5

9

13

17

19

6

10

14

18

Property Description Result

We use a list of test cases for ensuring the smart contract meets the minimum requirements of security. The result is as below

13

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

#

Incorrect ERC721 interfaces

Dangerous strict equalities

Contracts that lock ether

Misuse of Boolean constant

Reentrancy vulnerabilities (no theft of ethers)

Unchecked send

Deletion on mapping containing a structure

Constant functions using assembly code

Reused base constructor

Uninitialized local variables

State variables shadowing from abstract contracts

Constant functions changing the state

Dangerous usage of tx.origin

Unused return values

Built-in symbol shadowing

Tautology or contradiction

Imprecise arithmetic operations order

Unchecked low-level calls

Modifiers that can return the default value

erc721-interface

incorrect-equality

locked-ether

boolean-cst

reentrancy-no-eth

unchecked-send

mapping-deletion

constant-function-asm

reused-constructor

uninitialized-local

shadowing-abstract

constant-function-state

tx-origin

unused-return

shadowing-builtin

tautology

divide-before-multiply

unchecked-lowlevel

incorrect-modifier

Passed

Passed

VIDB-002

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

21

22

23

27

31

35

24

28

32

36

25

29

33

37

39

26

30

34

38

Property Description Result

Incorrect ERC20 interfaceserc20-interface Passed20

14

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

#

Uninitialized function pointer calls in constructors

Local variables used prior their declaration

Constructor called not implemented

Dangerous unary expressions

Dangerous usage of block.timestamp

Un-indexed ERC20 event parameters

Multiple calls in a loop

Missing Zero Address Validation

Assembly usage

Function initializing state variables

Missing Events Access Control

Benign reentrancy vulnerabilities

Comparison to boolean constant

Low level calls

Conformity to Solidity naming conventions

Missing Events Arithmetic

Reentrancy vulnerabilities leading to out-of-order Events

Deprecated Solidity Standards

Missing inheritance

uninitialized-fptr-cst

variable-scope

void-cst

incorrect-unary

timestamp

erc20-indexed

calls-loop

missing-zero-check

assembly

function-init-state

events-access

reentrancy-benign

boolean-equal

low-level-calls

naming-convention

events-maths

reentrancy-events

deprecated-standards

missing-inheritance

Passed

Passed

Passed

Passed

VIDB-003

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

41

42

43

47

51

55

44

48

52

56

45

49

53

57

59

46

50

54

58

Property Description Result

Local variables shadowingshadowing-local Passed40

15

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

#

Redundant statements

Incorrect Solidity version

Unimplemented functions

Reentrancy vulnerabilities through send and transfer

Public function that could be declared external

Unused state variables

Variable names are too similar

Assert state change

Conformance to numeric notation best practices

Costly operations in a loop

State variables that could be declared constant

redundant-statements

solc-version

unimplemented-functions

reentrancy-unlimited-gas

external-function

unused-state

similar-names

assert-state-change

too-many-digits

costly-loop

constable-states

Passed

VIDB-004

Passed

Passed

VIDB-007

Passed

Passed

Passed

VIDB-005

Passed

VIDB-006

61

62

63

67

71

64

68

65

69

66

70

Property Description Result

Table 7: Test case results

If different pragma directives are usedpragma Passed60

16

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

ID

Dead Amount Possibility

Block Timestamp

Too Many Digits

Locked Ether

Allowing Older Solidity Versions

State Variables That Could Be Declared Constant

Public function that could be declared external

Resource Management

Coding Practices

Coding Practices

Coding Practices

Coding Practices

Coding Practices

Coding Practices

Confirmed

Confirmed

Confirmed

Confirmed

Confirmed

Confirmed

Confirmed

VIDB-001

VIDB-003

VIDB-005

VIDB-002

VIDB-004

VIDB-006

VIDB-007

Severity Title Category Status

Table 8: Key findings

Besides recommending specific countermeasures to mitigate these issues, we also emphasize that it is always important to develop necessary risk-

control mechanisms and make contingency plans, which may need to be exercised before the mainnet deployment. The risk-control mechanisms

need to kick in at the very moment when the contracts are being deployed in mainnet. Please refer to the section Details.

The following table contains all the issues discovered during the audit. The issues are ordered based on their severity. More detailed descriptions

of the levels of severity can be found in Appendix 4

LOW

HIGH

INFORMATIONAL

INFORMATIONAL

INFORMATIONAL

INFORMATIONAL

INFORMATIONAL

17

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

Details

1. Dead Amount Possibility

Confirmed

Resource Management

#VIDB-001

CWE-399

Severity

Likelihood

Impact

Status

Category

ID

CWE subcategory

Description

In transfer and transferFrom function, the contract checks for require(_amount <= getAvailableBalance(_from));. And getAvailableBalance function

call getLockedAmount. In getLockedAmount, it loops for all items in lockList[lockedAddress].

Array lockList gets increasing over time and keeps increasing the gas that is used for getLockedAmount and also increases the gas for the

transfer function. When it reaches a certain number, the gas cost for transfer will become over the limit of gas for a transaction and make it unable

to transfer tokens.

[VIDBToken.getLockedAmount()] (contract.sol#719-724)

719

720

721

722

723

724

for(uint256 j = 0; j<lockList[lockedAddress].length; j++) {

 if(now < lockList[lockedAddress][j].releaseDate) {

 uint256 temp = lockList[lockedAddress][j].amount;

 lockedAmount += temp;

 }

}

Recommendation

Make a storage mapping for storing user locked amounts.

HIGH

HIGH

HIGH

18

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

2. Locked Ether

Confirmed

Coding Practices

#VIDB-002

CWE-1006

Severity

Likelihood

Impact

Status

Category

ID

CWE subcategory

Description

The contract has a payable function but without a withdrawal capacity. Every Ether sent to the contract will be lost.

[VIDBToken.fallback()] (contract.sol#786-788)

786

787

788

function () payable external {

 revert();

}

Recommendation

Remove the payable attribute or add a withdraw function.

LOW

LOW

LOW

19

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

3. Block Timestamp

Confirmed

N/A

N/A

Coding Practices

#VIDB-003

CWE-1006

Severity

Likelihood

Impact

Status

Category

ID

CWE subcategory

Description

Dangerous usage of block.timestamp, which can be manipulated by miners. Exploit Scenario: Bob’s contract relies on block.timestamp for its

randomness. Eve is a miner and manipulates block.timestamp to exploit Bob’s contract.

[VIDBToken.getLockedAmount(address)](contract.sol#722)

722

...

725

if(now < lockList[lockedAddress][j].releaseDate) {

 ...

}

Recommendation

Avoid relying on block.timestamp.

INFORMATIONAL

20

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

4. Allowing Older Solidity Versions

Confirmed

Coding Practices

#VIDB-004

CWE-1006

Severity

Likelihood

Impact

Status

Category

ID

CWE subcategory

Description

Pragma version ^0.5.0 allows old versions and solc-0.5.0 is not recommended for deployment. solc frequently releases new compiler versions.

Using an old version prevents access to new Solidity security checks. We also recommend avoiding complex pragma statements.

[VIDBToken.getLockedAmount(address)](contract.sol#722)

5 pragma solidity ^0.5.0;

Recommendation

Deploy with any of the following Solidity versions:

0.5.11 - 0.5.13,

0.6.8,

0.5.15 - 0.5.17,

0.6.10 - 0.8.0. Use a simple pragma version that allows any of these versions. Consider using the latest version of Solidity for testing.

N/A

N/A

INFORMATIONAL

21

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

5. Too Many Digits

Confirmed

Coding Practices

#VIDB-005

CWE-1006

Severity

Likelihood

Impact

Status

Category

ID

CWE subcategory

Description

Literals with many digits are difficult to read and review. While 1_ether looks like 1 ether, it is 10 ether. As a result, it’s likely to be used incorrectly.

[VIDBToken.constructor()](contract.sol#669,672,673,674,677,689)

669

672

673

674

677

689

totalTokens = 1000000000 * 10 ** uint256(decimals());

ERC20.transfer(investorWallet, 500000000 * 10 ** uint256(decimals()));

ERC20.transfer(airdropWallet, 10000000 * 10 ** uint256(decimals()));

ERC20.transfer(advisorWallet, 25000000 * 10 ** uint256(decimals()));

transferWithLock(reserveWallet, 125000000 * 10 ** uint256(decimals()), reserveMap[i]);

transferWithLock(advisorWallet, 40000000 * 10 ** uint256(decimals()), advisorMap[1]);

Recommendation

Use:

Ether suffix:

Time suffix:

The scientific notation:

https://docs.soliditylang.org/en/latest/units-and-global-variables.html#ether-units

https://docs.soliditylang.org/en/latest/units-and-global-variables.html#ether-units

https://docs.soliditylang.org/en/latest/types.html#rational-and-integer-literals

N/A

N/A

INFORMATIONAL

22

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

6. State Variables That Could Be Declared Constant

Confirmed

Coding Practices

#VIDB-006

CWE-1006

Severity

Likelihood

Impact

Status

Category

ID

CWE subcategory

Description

Constant state variables should be declared constant to save gas.

(contract.sol#L615-619)

615

616

617

618

619

address investorWallet = 0x278406d5a5198203ECc54B6a4b3612F174A73f69;

address reserveWallet = 0x72EBac03226b1937094c09ca3c181b52630695d5;

address foundationWallet = 0xb6f85f280e30c4f2b2739E62Da8166471a170D23;

address airdropWallet = 0x638551D8B1a5c582beC4cA978A894CA1B830157E;

address advisorWallet = 0x5b4774C795A35269FBc858f84B2242d86fEF75Ed;

Recommendation

Add the constant attributes to state variables that never change.

N/A

N/A

INFORMATIONAL

23

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

7. Public Function That Could Be Declared External

Confirmed

Coding Practices

#VIDB-007

CWE-1006

Severity

Likelihood

Impact

Status

Category

ID

CWE subcategory

Description

Public functions that are never called by the contract should be declared external to save gas.

(contract.sol#...)

337

372

391

510

518

591

600

736

740

752

774

778

782

function approve(address spender, uint256 amount) public returns (bool) {}

function increaseAllowance(address spender, uint256 addedValue) public returns (bool) {}

function decreaseAllowance(address spender, uint256 subtractedValue) public returns (bool) {}

function name() public view returns (string memory){}

function symbol() public view returns (string memory) {}

function renounceOwnership() public onlyOwner {}

function transferOwnership(address newOwner) public onlyOwner {}

function getLockedAddresses() public view returns (address[] memory) {}

function getNumberOfLockedAddresses() public view returns (uint256 _count) {}

function getLockedAddressesCurrently() public view returns (address[] memory) {}

function getCirculatingSupplyTotal() public view returns (uint256 _amount) {}

function getBurnedAmountTotal() public view returns (uint256 _amount) {}

function burn(uint256 _amount) public {}

Recommendation

Use the external attribute for functions never called from the contract.

N/A

N/A

INFORMATIONAL

24

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

Conclusion
In this audit, we have analyzed the design and implementation of the VIDB Token. We are impressed by the design and implementation of this

token. The current code base is well organized and those identified issues are promptly confirmed and fixed. As a final precaution, we need to

emphasize that smart contracts as a whole are still in an early, but exciting stage of development. To improve this report, we greatly appreciate any

constructive feedback or suggestions, on our methodology, audit findings, or potential gaps in scope/coverage.

25

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

Appendix

1. Basic Coding Bugs
1.1. Constructor Mismatch

1.3. Redundant Fallback Function

1.2. Ownership Takeover

1.4. Overflows & Underflows

Description: Whether the contract name and its constructor are not identical to each other.

Description: Whether the contract has a redundant fallback function

Description: Whether the set owner function is not protected

Description: Whether the contract has general overflow or underflow vulnerabilities

Result: Not found

Result: Not found

Result: Not found

Result: Not found

Severity: Critical

Severity: Critical

Severity: Critical

Severity: Critical

1.5. Reentrancy

1.6. Money-Giving Bug

Description: Reentrancy [20] is an issue when code can call back into your contract and change state, such as withdrawing ETHs

Description: Whether the contract returns funds to an arbitrary address

Result: Not found

Result: Not found

Severity: Critical

Severity: High

26

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

1.7. Blackhole

1.8. Unauthorized Self-Destruct

1.9. Revert DoS

1.10. Unchecked External Call

1.11. Gasless Send

Description: Whether the contract locks ETH indefinitely: merely in without out

Description: Whether the contract can be killed by any arbitrary address

Description: Whether the contract is vulnerable to DoS attack because of unexpected revert

Description: Whether the contract has any external call without checking the return value

Description: Whether the contract is vulnerable to gasless send

Result: Not found

Result: Not found

Result: Not found

Result: Not found

Result: Not found

Severity: High

Severity: Medium

Severity: Medium

Severity: Medium

Severity: Medium

1.12. Send Instead Of Transfer

1.13. Costly Loop

Description: Whether the contract uses send instead of transfer

Description: Whether the contract has any costly loop which may lead to Out-Of-Gas exception

Result: Not found

Result: Not found

Severity: Medium

Severity: Medium

27

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

1.15. (Unsafe) Use Of Predictable Variables

1.14. (Unsafe) Use Of Untrusted Libraries

1.17. Deprecated Uses

1.16. Transaction Ordering Dependence

Description: Whether the contract contains any randomness variable, but its value can be predicated

Description: Whether the contract use any suspicious libraries

Description: Whether the contract use the deprecated tx.origin to perform the authorization

Description: Whether the final state of the contract depends on the order of the transactions

Result: Not found

Result: Not found

Result: Not found

Result: Not found

Severity: Medium

Severity: Medium

Severity: Medium

Severity: Medium

2. Semantic Consistency Checks
Description: Whether the semantic of the white paper is different from the implementation of the contract

Result: Not found

Severity: Critical

28

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

3. Additional Recommendations
3.1. Avoid Use of Variadic Byte Array

3.2. Make Visibility Level Explicit

3.3. Make Type Inference Explicit

3.4. Adhere To Function Declaration Strictly

Description: Use fixed-size byte array is better than that of byte[], as the latter is a waste of space.

Description: Assign explicit visibility specifiers for functions and state variables

Description: Do not use keyword var to specify the type, i.e., it asks the compiler to deduce the type, which is not safe especially in a loop

Description: Solidity compiler (version 0.4.23) enforces strict ABI length checks for return data from calls() [1], which may break the the

execution if the function implementation does NOT follow its declaration (e.g., no return in implementing transfer() of ERC20 tokens)

Result: Not found

Result: Not found

Result: Not found

Result: Not found

Severity: Low

Severity: Low

Severity: Low

Severity: Low

29

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

4. Severity
Informational

Low

High

Critical

Medium

The issue does not pose an immediate risk, but is relevant to security best practices or Defense in Depth.

Low issues are generally subjective in nature or potentially deal with topics like “best practices” or “readability”. Low issues will in general not

indicate an actual problem or bug in code.

High issues will be things like bugs or security vulnerabilities. These issues may not be directly exploitable or may require a certain condition to

arise in order to be exploited.

Critical issues are directly exploitable bugs or security vulnerabilities.

Medium issues are generally objective in nature but do not represent actual bugs or security problems.

The maintainers should use their own judgment as to whether addressing these issues improves the codebase.

Left unaddressed, these issues are highly likely to cause problems with the operation of the contract or to lead to a situation that allows the system

to be exploited in some way.

Left unaddressed, these issues are highly likely or guaranteed to cause major problems or potentially a full failure in the operations of the contract

system.

These issues should be addressed unless there is a clear reason not to.

30

CONFIDENTIAL SMART CONTRACT AUDIT REPORT

Copyright © 2021 CyStack Security. All rights reserved

